Skip to main content
Log in

Nitsche’s method for finite deformation thermomechanical contact problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an extension of Nitsche’s method to finite deformation thermomechanical contact problems including friction. The mechanical contact constraints, i.e. non-penetration and Coulomb’s law of friction, are introduced into the weak form using a stabilizing consistent penalty term. The required penalty parameter is estimated with local generalized eigenvalue problems, based on which an additional harmonic weighting of the boundary traction is introduced. A special focus is put on the enforcement of the thermal constraints at the contact interface, namely heat conduction and frictional heating. Two numerical methods to introduce these effects are presented, a substitution method as well as a Nitsche-type approach. Numerical experiments range from two-dimensional frictionless thermo-elastic problems demonstrating optimal convergence rates to three-dimensional thermo-elasto-plastic problems including friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsches formulation for interface problems. Comput Method Appl M 225:44–54

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball JM (1976) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumberger T, Berthoud P, Caroli C (1999) Physical analysis of the state-and rate-dependent friction law. ii. dynamic friction. Phys Rev B 60(6):3928

    Article  Google Scholar 

  4. Burman E, Zunino P (2011) Numerical approximation of large contrast problems with the unfitted Nitsche method. In: Blowey J, Jensen M (eds) Frontiers in numerical analysis-Durham 2010 Lecture notes in computational science and engineering, vol 85. Springer, Berlin, pp 227–282

    Chapter  Google Scholar 

  5. Chouly F (2014) An adaptation of Nitsches method to the Tresca friction problem. J Math Anal Appl 411(1):329–339

    Article  MathSciNet  MATH  Google Scholar 

  6. Chouly F, Hild P (2013) A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J Numer Anal 51(2):1295–1307

    Article  MathSciNet  MATH  Google Scholar 

  7. Chouly F, Hild P, Renard Y (2015) Symmetric and non-symmetric variants of Nitsches method for contact problems in elasticity: theory and numerical experiments. Math Comput 84(293):1089–1112

    Article  MathSciNet  MATH  Google Scholar 

  8. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken

    Book  MATH  Google Scholar 

  9. Curnier A, He QC, Klarbring A (1995) Continuum mechanics modelling of large deformation contact with friction. In: Raous M, Jean M, Moreau JJ (eds) Contact mechanics. Springer, Berlin, pp 145–158

    Chapter  Google Scholar 

  10. Danowski C, Gravemeier V, Yoshihara L, Wall WA (2013) A monolithic computational approach to thermo-structure interaction. Int J Numer Methods Eng 95(13):1053–1078

    Article  MathSciNet  MATH  Google Scholar 

  11. De Saracibar CA (1998) Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications. Arch Comput Method E 5(3):243–301

    Article  MathSciNet  Google Scholar 

  12. Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric analysis and thermomechanical mortar contact problems. Comput Method Appl M 274:192–212

    Article  MathSciNet  MATH  Google Scholar 

  13. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Methods Eng 78(2):229–252

    Article  MathSciNet  MATH  Google Scholar 

  14. Farah P, Popp A, Wall WA (2015) Segment-based versus element-based integration for mortar methods in computational contact mechanics. Comput Mech 55(1):209–228

    Article  MathSciNet  MATH  Google Scholar 

  15. Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571

    MathSciNet  MATH  Google Scholar 

  16. Griebel M, Schweitzer MA (2003) A particle-partition of unity method part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542

    Chapter  Google Scholar 

  17. Hager C, Wohlmuth B (2009) Nonlinear complementarity functions for plasticity problems with frictional contact. Comput Method Appl M 198(41–44):3411–3427

    Article  MathSciNet  MATH  Google Scholar 

  18. Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt 28(2):183–206

    Article  MathSciNet  MATH  Google Scholar 

  19. Hansen G (2011) A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems. J Comput Phys 230(17):6546–6562

    Article  MathSciNet  MATH  Google Scholar 

  20. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Hoboken

    MATH  Google Scholar 

  21. Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. J Sci Comput 30(2):572–596

    MathSciNet  MATH  Google Scholar 

  22. Hüeber S, Wohlmuth BI (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Method Appl M 194(27–29):3147–3166

    Article  MathSciNet  MATH  Google Scholar 

  23. Hüeber S, Wohlmuth BI (2009) Thermo-mechanical contact problems on non-matching meshes. Comput Method Appl M 198(15–16):1338–1350

    Article  MATH  Google Scholar 

  24. Johansson L, Klarbring A (1993) Thermoelastic frictional contact problems: modelling, finite element approximation and numerical realization. Comput Method Appl M 105(2):181–210

    Article  MathSciNet  MATH  Google Scholar 

  25. Juntunen M, Stenberg R (2009) Nitsches method for general boundary conditions. Math Comput 78(267):1353–1374

    Article  MathSciNet  MATH  Google Scholar 

  26. Khoei A, Saffar H, Eghbalian M (2015) An efficient thermo-mechanical contact algorithm for modeling contact-impact problems. Asian J Civ Eng (Build Hous) 16(5):681–708

    Google Scholar 

  27. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  28. Mlika R, Renard Y, Chouly F (2017) An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput Method Appl M 325:265–288

    Article  MathSciNet  MATH  Google Scholar 

  29. Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh Math Semin Univ Hambg 36(1):9–15

    Article  MATH  Google Scholar 

  30. Oancea VG, Laursen TA (1997) A finite element formulation of thermomechanical rate-dependent frictional sliding. Int J Numer Methods Eng 40(23):4275–4311

    Article  MATH  Google Scholar 

  31. Pantuso D, Bathe KJ, Bouzinov PA (2000) A finite element procedure for the analysis of thermo-mechanical solids in contact. Comput Struct 75(6):551–573

    Article  Google Scholar 

  32. Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391

    Article  MathSciNet  MATH  Google Scholar 

  33. Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465

    Article  MathSciNet  MATH  Google Scholar 

  34. Poulios K, Renard Y (2015) An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput Struct 153:75–90

    Article  Google Scholar 

  35. Qi L, Sun J (1993) A nonsmooth version of Newton’s method. Math Program 58(1):353–367

    Article  MathSciNet  MATH  Google Scholar 

  36. Renard Y (2013) Generalized Newtons methods for the approximation and resolution of frictional contact problems in elasticity. Comput Method Appl M 256:38–55

    Article  MathSciNet  MATH  Google Scholar 

  37. Sauer RA, De Lorenzis L (2015) An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng 101(4):251–280

    Article  MathSciNet  MATH  Google Scholar 

  38. Seitz A, Farah P, Kremheller J, Wohlmuth BI, Wall WA, Popp A (2016) Isogeometric dual mortar methods for computational contact mechanics. Comput Method Appl M 301:259–280

    Article  MathSciNet  MATH  Google Scholar 

  39. Seitz A, Wall WA, Popp A (2018) A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Adv Model Simul Eng Sci 5(1):5

    Article  Google Scholar 

  40. Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Method Appl M 98(1):41–104

    Article  MATH  Google Scholar 

  41. de Souza Neto EA, Perić D, Dutko M, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20–22):3277–3296

    Article  MathSciNet  MATH  Google Scholar 

  42. Temizer I (2014) Multiscale thermomechanical contact: computational homogenization with isogeometric analysis. Int J Numer Methods Eng 97(8):582–607

    Article  MathSciNet  MATH  Google Scholar 

  43. Temizer I, Wriggers P, Hughes T (2011) Contact treatment in isogeometric analysis with NURBS. Comput Method Appl M 200(9–12):1100–1112

    Article  MathSciNet  MATH  Google Scholar 

  44. Verdugo F, Wall WA (2016) Unified computational framework for the efficient solution of n-field coupled problems with monolithic schemes. Comput Method Appl M 310:335–366

    Article  MathSciNet  Google Scholar 

  45. Wall WA, Ager C, Grill M, Kronbichler M, Popp A, Schott B, Seitz A (2018) BACI: A multiphysics simulation environment. Institute for Computational Mechanics, Technical University of Munich, Tech. rep

  46. Wiesner T, Popp A, Gee M, Wall W (2018) Algebraic multigrid methods for dual mortar finite element formulations in contact mechanics. Int J Numer Methods Eng 114(4):399–430

    Article  MathSciNet  Google Scholar 

  47. Winter M, Schott B, Massing A, Wall W (2018) A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions. Comput Method Appl M 330:220–252

    Article  MathSciNet  Google Scholar 

  48. Wohlmuth BI (2011) Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer 20:569–734

    Article  MathSciNet  MATH  Google Scholar 

  49. Wohlmuth BI, Popp A, Gee MW, Wall WA (2012) An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Comput Mech 49:735–747

    Article  MathSciNet  MATH  Google Scholar 

  50. Wriggers P, Laursen TA (2006) Computational contact mechanics, vol 30167. Springer, New York

    Book  MATH  Google Scholar 

  51. Wriggers P, Miehe C (1994) Contact constraints within coupled thermomechanical analysis—a finite element model. Comput Method Appl M 113(3):301–319

    Article  MathSciNet  MATH  Google Scholar 

  52. Wriggers P, Zavarise G (2008) A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput Mech 41(3):407–420

    Article  MATH  Google Scholar 

  53. Xing H, Makinouchi A (2002) Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy. Comput Method Appl M 191(37):4193–4214

    Article  MATH  Google Scholar 

  54. Zavarise G, Wriggers P, Stein E, Schrefler B (1992) Real contact mechanisms and finite element formulation—a coupled thermomechanical approach. Int J Numer Methods Eng 35(4):767–785

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Seitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A Consistency of the thermal weak form using Nitsche’s method

Appendix: A Consistency of the thermal weak form using Nitsche’s method

To show the consistency of (39), i.e. equivalence of (39) with (30) in combination with (24) and (25), we first observe, that \(\bar{\beta }_c\) and \({\mathcal {P}}_\tau \) are, due to (31) and (33), consistent substitutes for \(\beta _c\vert p_n \vert \) and \(\varvec{{t}}_\tau \cdot \varvec{{v}}_\tau \) in (24) and (25). Next, (24) and (25) provide the following equivalences for weighted heat fluxes:

$$\begin{aligned}&\left\{ q_c(T)\right\} _{\omega _\vartheta } = \left\{ q_c(T)\right\} _{(1-\delta _c)} +(1-\delta _c-\omega _\vartheta ) \varvec{{t}}_\tau \cdot \varvec{{v}}_\tau \end{aligned}$$
(53a)
$$\begin{aligned}&\left\{ q_c(T)\right\} _{(1-\delta _c)} = \beta _c\vert p_n \vert [\![T]\!] \;\;, \end{aligned}$$
(53b)

with which (39) can be re-written as

$$\begin{aligned} \begin{aligned}&\int _{\varOmega }\delta T C_v \dot{T} \,{\mathrm {d}}\varOmega +\int _{\varOmega }(\nabla _{\varvec{{X}}} T)^{{\mathrm {T}}} k_0 \varvec{{C}}^{-1}\nabla _{\varvec{{X}}}\delta T \,{\mathrm {d}}\varOmega \\&\quad -\int _{\varOmega } \left( \frac{1}{2} T\frac{\partial \varvec{{S}}:\dot{\varvec{{C}}}}{\partial T} + \hat{R}_0\right) \delta T \,{\mathrm {d}}\varOmega -\int _{\varGamma _q} \hat{Q}_0 \delta T \,{\mathrm {d}}\varGamma \\&\quad +\int _{\gamma _c^{(1)}} \frac{\beta _c\vert p_n\vert }{ \beta _c\vert p_n\vert +\gamma _\vartheta } \left\{ q_c(T)\right\} _{(1-\delta _c)} [\![\delta T]\!] \,{\mathrm {d}}\gamma \\&\quad +\int _{\gamma _c^{(1)}} \frac{\gamma _\vartheta \beta _c\vert p_n\vert }{\beta _c\vert p_n\vert +\gamma _\vartheta } [\![T]\!] [\![\delta T]\!] \,{\mathrm {d}}\gamma \\&\quad -\theta _\vartheta \int _{\gamma _c^{(1)}} \frac{1}{\beta _c\vert p_n\vert +\gamma _\vartheta } \left\{ q_c(T)\right\} _{(1-\delta _c)} \left\{ q_c(\delta T)\right\} _{\omega _\vartheta }\,{\mathrm {d}}\gamma \\&\quad +\theta _\vartheta \int _{\gamma _c^{(1)}} \frac{\beta _c\vert p_n\vert }{\beta _c\vert p_n\vert +\gamma _\vartheta } [\![T]\!] \left\{ q_c(\delta T)\right\} _{\omega _\vartheta } \,{\mathrm {d}}\gamma \\&\quad -\int _{\gamma _c^{(1)}}\varvec{{t}}_\tau \cdot \varvec{{v}}_\tau \left( \delta _c\delta T^{(1)} + (1-\delta _c)\delta T^{(2)} \circ \chi _t \right) \,{\mathrm {d}}\gamma \\&= 0 \forall \delta T \in {\mathcal {V}}_T \;\;, \end{aligned} \end{aligned}$$
(54)

Next, let us take a closer look at the fifth and sixth line containing all terms tested with \( \left\{ q_c(\delta T)\right\} _{\omega _\vartheta }\):

$$\begin{aligned} \begin{aligned}&-\theta _\vartheta \int _{\gamma _c^{(1)}} \frac{1}{\beta _c\vert p_n\vert +\gamma _\vartheta } \left\{ q_c(T)\right\} _{(1-\delta _c)} \left\{ q_c(\delta T)\right\} _{\omega _\vartheta }\,{\mathrm {d}}\gamma \\&\quad +\theta _\vartheta \int _{\gamma _c^{(1)}} \frac{\beta _c\vert p_n\vert }{\beta _c\vert p_n\vert +\gamma _\vartheta } [\![T]\!] \left\{ q_c(\delta T)\right\} _{\omega _\vartheta } \,{\mathrm {d}}\gamma \\&\quad = -\theta _\vartheta \int _{\gamma _c^{(1)}} \frac{1}{\beta _c\vert p_n\vert +\gamma _\vartheta } \left( \underbrace{\left\{ q_c(T)\right\} _{(1-\delta _c)} -\beta _c\vert p_n \vert [\![T]\!] }_{{\mathop {=}\limits ^{\text {eq.~(53b)}}}0} \right) \,{\mathrm {d}}\gamma \\&\quad = 0 \;\;. \end{aligned} \end{aligned}$$
(55)

What remains from (54) is

$$\begin{aligned} \begin{aligned}&\int _{\varOmega }\delta T C_v \dot{T} \,{\mathrm {d}}\varOmega +\int _{\varOmega }(\nabla _{\varvec{{X}}} T)^{{\mathrm {T}}} k_0 \varvec{{C}}^{-1}\nabla _{\varvec{{X}}}\delta T \,{\mathrm {d}}\varOmega \\&-\int _{\varOmega } \left( \frac{1}{2} T\frac{\partial \varvec{{S}}:\dot{\varvec{{C}}}}{\partial T} + \hat{R}_0\right) \delta T \,{\mathrm {d}}\varOmega -\int _{\varGamma _q} \hat{Q}_0 \delta T \,{\mathrm {d}}\varGamma \\&+\int _{\gamma _c^{(1)}} \frac{\beta _c\vert p_n\vert }{ \beta _c\vert p_n\vert +\gamma _\vartheta } \left\{ q_c(T)\right\} _{(1-\delta _c)} [\![\delta T]\!] \,{\mathrm {d}}\gamma \\&+\int _{\gamma _c^{(1)}} \frac{\gamma _\vartheta \beta _c\vert p_n\vert }{\beta _c\vert p_n\vert +\gamma _\vartheta } [\![T]\!] [\![\delta T]\!] \,{\mathrm {d}}\gamma \\&-\int _{\gamma _c^{(1)}}\varvec{{t}}_\tau \cdot \varvec{{v}}_\tau \left( \delta _c\delta T^{(1)} + (1-\delta _c)\delta T^{(2)} \circ \chi _t \right) \,{\mathrm {d}}\gamma \\ =&\int _{\varOmega }\delta T C_v \dot{T} \,{\mathrm {d}}\varOmega +\int _{\varOmega }(\nabla _{\varvec{{X}}} T)^{{\mathrm {T}}} k_0 \varvec{{C}}^{-1}\nabla _{\varvec{{X}}}\delta T \,{\mathrm {d}}\varOmega \\&-\int _{\varOmega } \left( \frac{1}{2} T\frac{\partial \varvec{{S}}:\dot{\varvec{{C}}}}{\partial T} + \hat{R}_0\right) \delta T \,{\mathrm {d}}\varOmega -\int _{\varGamma _q} \hat{Q}_0 \delta T \,{\mathrm {d}}\varGamma \\&+\int _{\gamma _c^{(1)}} \left\{ q_c(T)\right\} _{(1-\delta _c)} [\![\delta T]\!] \,{\mathrm {d}}\gamma \\&-\int _{\gamma _c^{(1)}} \frac{\gamma _\vartheta }{\beta _c\vert p_n\vert + \gamma _\vartheta } \left( \underbrace{ \left\{ q_c(T)\right\} _{(1-\delta _c)} - \beta _c\vert p_n\vert [\![T]\!] }_{{\mathop {=}\limits ^{\text {eq.~{(53)}}}}0} \right) [\![\delta T]\!] \,{\mathrm {d}}\gamma \\&-\int _{\gamma _c^{(1)}}\varvec{{t}}_\tau \cdot \varvec{{v}}_\tau \left( \delta _c\delta T^{(1)} + (1-\delta _c)\delta T^{(2)} \circ \chi _t \right) \,{\mathrm {d}}\gamma \\ =&\int _{\varOmega }\delta T C_v \dot{T} \,{\mathrm {d}}\varOmega +\int _{\varOmega }(\nabla _{\varvec{{X}}} T)^{{\mathrm {T}}} k_0 \varvec{{C}}^{-1}\nabla _{\varvec{{X}}}\delta T \,{\mathrm {d}}\varOmega \\&-\int _{\varOmega } \left( \frac{1}{2} T\frac{\partial \varvec{{S}}:\dot{\varvec{{C}}}}{\partial T} + \hat{R}_0\right) \delta T \,{\mathrm {d}}\varOmega -\int _{\varGamma _q} \hat{Q}_0 \delta T \,{\mathrm {d}}\varGamma \\&+\int _{\gamma _c^{(1)}} (\underbrace{\beta _c\vert p_n\vert [\![T]\!] - \delta _c \varvec{{t}}_\tau \cdot \varvec{{v}}_\tau }_{{\mathop {=}\limits ^{\text {eq.~(24)}}}q_c^{(1)}} ) \delta T^{(1)} \\&\qquad +(\underbrace{-\beta _c\vert p_n\vert [\![T]\!] -(1-\delta _c)\varvec{{t}}_\tau \cdot \varvec{{v}}_\tau }_{{\mathop {=}\limits ^{\text {eq.~25}}}q_c^{(2)}}) (\delta T^{(2)}\circ \chi _t) \,{\mathrm {d}}\gamma \\&= 0 \forall \delta T \in {\mathcal {V}}_T \;\;, \end{aligned} \end{aligned}$$
(56)

which is indeed equivalent to (30).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seitz, A., Wall, W.A. & Popp, A. Nitsche’s method for finite deformation thermomechanical contact problems. Comput Mech 63, 1091–1110 (2019). https://doi.org/10.1007/s00466-018-1638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1638-x

Keywords

Navigation