Skip to main content
Log in

On the accuracy of spectral solvers for micromechanics based fatigue modeling

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A framework based on FFT is proposed for micromechanical fatigue modeling of polycrystals as alternative to the Finite Element method (FEM). The variational FFT approach (de Geus et al. in Comput Methods Appl Mech Eng 318:412–430, 2017; Zeman et al. in Int J Numer Methods Eng 110:903–926, 2017) is used with a crystal plasticity model for the cyclic behavior of the grains that is introduced through a FEM material subroutine, in particular an Abaqus umat. The framework also includes an alternative projection operator based on discrete differentiation to improve the microfield fidelity allowing to include second phases. The accuracy and efficiency of the FFT framework for microstructure sensitive fatigue prediction are assessed by comparing with FEM. The macroscopic cyclic response of a polycrystal obtained with both methods were indistinguishable, irrespective of the number of cycles. The microscopic fields presented small differences that decrease when using the discrete projection operator, which indeed allowed simulating accurately microstructures containing very stiff particles. Finally, the maximum differences in the fatigue life estimation from the microfields respect FEM were around 15%. In summary, this framework allows predicting fatigue life with a similar accuracy than using FEM but strongly reducing the computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\Omega _0\) :

Domain in reference configuration

\(\mathbf {x},\varvec{\xi },\varvec{\alpha }\) :

Vectors \(x_{i},\xi _{i},\alpha _{i}\)

\(\mathbf {P},\mathbf {F},\varvec{\tau }\) :

Second-order tensors \(P_{ij},F_{ij},\tau _{ij}\)

\(\mathbb {C},\mathbb {G},\mathbb {K}\) :

Fourth-order tensors and operators \(C_{ijkl},G_{ijkl},K_{ijkl}\)

\(\mathbf {A}=\mathbf {F}^T\) :

Tensor transpose \(A_{ij}=F_{ji}\)

\(\mathbf {A}=\varvec{\tau }\mathbf {F}\) :

Dot product \(A_{ij}=\tau _{ip}F_{pj}\)

\(a=\mathbf {F}:\mathbf {P}\) :

Double dot product \(a=F_{ij}P_{ij}\)

\(\mathbf {P}=\mathbb {C}:\mathbf {F}\) :

Double dot product \(P_{ij}=C_{ijkl}F_{kl}\)

\(\mathrm {Div} \ \mathbf {P}\) :

Divergence of tensor field in the reference configuration \(\frac{\partial P_{ij}}{\partial X_j}\)

\(G *P\) :

Convolution operation

\(I_{ijkl}\) :

Fourth order identity tensor \(I_{ijkl}=\delta _{ik}\delta _{jl}\)

References

  1. de Geus TWJ, Vondejc J, Zeman J, Peerlings RHJ, Geers MGD (2017) Finite strain FFT-based non-linear solvers made simple. Comput Methods Appl Mech Eng 318:412–430

    Article  MathSciNet  Google Scholar 

  2. Zeman J, de Geus TWJ, Vondrejc J, Peerlings RHJ, Geers MGD (2017) A finite element perspective on nonlinear FFT-based micromechanical simulations. Int J Numer Methods Eng 110:903–926

    Article  MathSciNet  Google Scholar 

  3. McDowell DL, Dunne FPE (2010) Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue 32(9):1521–1542

    Article  Google Scholar 

  4. Pineau A, McDowell DL, Busso EP, Antolovich SD (2016) Failure of metals II: fatigue. Acta Mater 107:484–507

    Article  Google Scholar 

  5. Segurado J, Lebensohn RA, LLorca J (2018) Computational homogenization of polycrystals. Adv Appl Mech (submitted)

  6. Herrera-Solaz V, LLorca J, Dogan E, Karaman I, Segurado J (2014) An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: application to AZ31 Mg alloy. Int J Plast 57:1–15

    Article  Google Scholar 

  7. Cruzado A, Gan B, Jimenez M, Barba D, Ostolaza K, Linaza A, Molina-Aldareguia JM, Llorca J, Segurado J (2015) Multiscale modeling of the mechanical behavior of IN718 superalloy based on micropillar compression and computational homogenization. Acta Mater 98:242–253

    Article  Google Scholar 

  8. Cailletaud G (1992) A micromechanical approach to inelastic behaviour of metals. Int J Plast 8(1):55–73

    Article  MATH  Google Scholar 

  9. Cruzado A, LLorca J, Segurado J (2017) Modeling cyclic deformation of inconel 718 superalloy by means of crystal plasticity and computational homogenization. Int J Solids Struct 122:148–161

    Article  Google Scholar 

  10. Shenoy M, Zhang J, McDowell DL (2007) Estimating fatigue sensitivity to polycrystalline Ni-base superalloy microstructures using a computational approach. Fatigue Fract Eng Mater Struct 30:889–904

    Article  Google Scholar 

  11. McDowell DL, Dunne FPE (2010) Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue 32:1521–1542

    Article  Google Scholar 

  12. Sangid MD (2013) The physics of fatigue crack initiation. Int J Fatigue 57:58–72

    Article  Google Scholar 

  13. Zhang T, Jiang J, Shollock BA, Britton TB, Dunne FPE (2015) Slip localization and fatigue crack nucleation near a non-metallic inclusion in polycrystalline nickel-based superalloy. Mater Sci Eng A 641:328–339

    Article  Google Scholar 

  14. Castelluccio GM, McDowell DL (2014) Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals. Mater Sci Eng A 598:34–55

    Article  Google Scholar 

  15. Cruzado A, Lucarini S, LLorca J, Segurado J (2018) Microstructure-based fatigue life model of metallic alloys with bilinear Coffin–Manson behavior. Int J Fatigue 107:40–48

    Article  Google Scholar 

  16. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1):69–94

    Article  MathSciNet  MATH  Google Scholar 

  17. Eisenlohr P, Diehl M, Lebensohn RA, Roters F (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast 46:37–53

    Article  Google Scholar 

  18. Kabel M, Merkert D, Schneider M (2015) Use of composite voxels in FFT-based homogenization. Comput Methods Appl Mech Eng 294:168–188

    Article  MathSciNet  Google Scholar 

  19. Monchiet V, Bonnet G (2013) Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme. Comput Mater Sci 79:276–283

    Article  Google Scholar 

  20. Lebensohn RA, Escobedo JP, Cerreta EK, Dennis-Koller D, Bronkhorst CA, Bingert JF (2013) Modeling void growth in polycrystalline materials. Acta Mater 61(18):6918–6932

    Article  Google Scholar 

  21. Lebensohn RA, Cazacu O (2012) Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals. Int J Solids Struct 49(26):3838–3852

    Article  Google Scholar 

  22. Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast fourier transform. Acta Mater 49(14):2723–2737

    Article  Google Scholar 

  23. Lebensohn RA, Liu Y, Ponte Castaneda P (2004) On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations. Acta Mater 52(18):5347–5361

    Article  Google Scholar 

  24. Willot F (2015) Fourier-based schemes for computing the mechanical response of composites with accurate local fields. CR Mec 343(3):232–245

    Article  MathSciNet  Google Scholar 

  25. Rovinelli A, Lebensohn RA, Sangid MD (2015) Influence of microstructure variability on short crack behavior through postulated micromechanical short crack driving force metrics. Eng Fract Mech 138:265–288

    Article  Google Scholar 

  26. Vondrejc J, Zeman J, Marek I (2010) Matlab implementation of FFT-based solver for numerical homogenization accelerated by conjugate gradients. Czech Technical University, Praha

    MATH  Google Scholar 

  27. Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172(1):109–143

    Article  MathSciNet  MATH  Google Scholar 

  28. Hestenes MR, Stiefel R (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6):409–436

    Article  MathSciNet  MATH  Google Scholar 

  29. Kaasschieter EF (1988) Preconditioned conjugate gradients for solving singular systems. J Comput Appl Math 24(1):265–275

    Article  MathSciNet  MATH  Google Scholar 

  30. Willot F, Abdalla B, Pellegrini YP (2014) Fourier-based schemes with modified green operator for computing the electrical response of heterogeneous media with accurate local fields. Int J Numer Methods Eng 98(7):518–533

    Article  MathSciNet  MATH  Google Scholar 

  31. Portillo D, del Pozo D, Rodriguez-Galan D, Segurado J, Romero I (2017) Muesli: a material universal library. Adv Eng Softw 105:1–8

    Article  Google Scholar 

  32. Quey R, Dawson PR, Barbe F (2011) Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput Methods Appl Mech Eng 200(17):1729–1745

    Article  MATH  Google Scholar 

  33. Asaro RJ, Needleman A (1985) Overview no. 42 texture development and strain hardening in rate dependent polycrystals. Acta Metall 33(6):923–953

    Article  Google Scholar 

  34. Manonukul A, Dunne FPE (2004) High- and low-cycle fatigue crack initiation using polycrystal plasticity. Proc R Soc Lond A Math Phys Eng Sci 460:1881–1903

    Article  MATH  Google Scholar 

  35. Sweeney CA, McHugh PE, McGarry JP, Leen SB (2012) Micromechanical methodology for fatigue in cardiovascular stents. Int J Fatigue 44:202–216

    Article  Google Scholar 

  36. Sweeney CA, O’Brien B, McHugh PE, Leen SB (2014) Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials 35:36–48

    Article  Google Scholar 

  37. Wan VVC, MacLachlan DW, Dunne FPE (2014) A stored energy criterion for fatigue crack nucleation in polycrystals. Int J Fatigue 68:90–102

    Article  Google Scholar 

  38. Sweeney CA, Vorster W, Leen SB, Sakurada E, McHugh PE, Dunne FPE (2013) The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation. J Mech Phys Solids 61:1224–1240

    Article  MathSciNet  Google Scholar 

  39. Castelluccio GM, McDowell DL (2015) Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals. Mater Sci Eng A 639:626–639

    Article  Google Scholar 

  40. Segurado J, Llorca J (2013) Simulation of the deformation of polycrystalline nanostructured ti by computational homogenization. Comput Mater Sci 76:3–11

    Article  Google Scholar 

Download references

Acknowledgements

This investigation was supported by ITP (Industria de Turbo Propulsores. S. A.), the Comunidad de Madrid through the Grant PEJD-2016/IND-2824 and the Spanish Ministry of Economy and Competitiveness through the project DPI2015-67667-C3-2-R. The authors thank Dr. A. Linaza and Dr. K. Ostolaza from ITP for Their useful advises and to Dr. A. Cruzado (Texas A&M), M. Spinola and Jun Lian Wang for their help in testing and evaluating the FFT code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Segurado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Coupling with Abaqus material user subroutines

Appendix: Coupling with Abaqus material user subroutines

In this appendix, the adaptation of the Abaqus user material subroutine umat to the FFT framework will be presented for a generic non-linear material with internal variables and under finite deformations.

The FFT method needs to evaluate at each iteration the constitutive equation (Eq. 2) for each point as function of the deformation gradient at current and previous time increments, \(\mathbf {F}^{t_k}\) and \(\mathbf {F}^{t_{k-1}}\) respectively, the last value of the internal variables, \(\varvec{\alpha }^{t_{k-1}}\), and the time step \(\delta t\). These values are also inputs of a umat subroutine and are passed from the FFT code to the umat subroutine through the variables DFGRD1,DFGRD0,STATEV and DTIME respectively. After the evaluation, the FFT code needs to recover from the constitutive model the first Piola Kirchhoff stress \(\mathbf {P}^{t_k}\), the value of the state variables at \(t_k\) and the material tangent \(\mathbb {K}\). The umat subroutine provides the Cauchy stress at time \(t_k\) (\(\varvec{\sigma }\)) in the variable STRESS so, the first Piola-Kirchhoff stress is computed from this value and \(\mathbf {F}=\mathbf {F}^{t_k}\) using

$$\begin{aligned} \mathbf {P}=J\varvec{\sigma } \mathbf {F}^{-T} \end{aligned}$$
(A.1)

with \(J=\det (\mathbf {F})\).

In the case of \(\mathbb {K}\), an exact transformation of the consistent tangent matrix defined in the umat (variable DDSDDE) to the material tangent used by the FFT code is fundamental to preserve in FFT the convergence rate obtained with the user material in a finite element simulation. The material Jacobian that should be defined in a user subroutine at finite strain is the tangent modulus tensor for the Jaumann rate of the Kirchhoff stress, \(\mathbb {C}^{ab}\), a fourth order tensor defined as

$$\begin{aligned} \overset{\nabla }{\varvec{\tau }}= \dot{\varvec{\tau }} - \mathbf {w} \cdot \varvec{\tau }-\varvec{\tau }\cdot \mathbf {w}^T= J \ \mathbb {C}^{ab} : \mathbf {d} \end{aligned}$$
(A.2)

where \(\varvec{\tau }\) is the Kirchhoff stress, \(\overset{\nabla }{}\) corresponds to the Jaumann rate and \(\mathbf {w}\) and \(\mathbf {d}\) are the spin tensor and stretch tensor respectively. In the FFT framework, the material tangent needed to define the linear operator of the equilibrium in each iteration (Eq. 16) is defined as

$$\begin{aligned} \dot{\mathbf {P}} = \mathbb {K}:\dot{\mathbf {F}} \end{aligned}$$
(A.3)

and the objective then is to derive an explicit expression relating both tensors, \(\mathbb {C}^{ab}\) and \(\mathbb {K}\).

Combining the definition of the material tangent in FFT, Eq. (A.3), and Eq. (A.1) it is obtained

$$\begin{aligned} \mathbb {K}=\frac{\partial \mathbf {P}}{\partial \mathbf {F}}= \frac{\partial \left( J\varvec{\sigma }\cdot \mathbf {F}^{-T}\right) }{\partial \mathbf {F}}= \frac{\partial \left( \varvec{\tau }\cdot \mathbf {F}^{-T}\right) }{\partial \mathbf {F}}. \end{aligned}$$
(A.4)

Expressing the previous expression (Eq. A.4) in index notation and expanding the derivative of the product in two terms it is obtained

$$\begin{aligned} K_{ijkl}=\frac{\partial P_{ij}}{\partial F_{kl}}= \frac{\partial \left( \tau _{ip} F^{-1}_{jp}\right) }{\partial F_{kl}}= \frac{\partial \tau _{ip}}{\partial F_{kl}} F^{-1}_{jp}+ \tau _{ip}\frac{\partial F^{-1}_{jp}}{\partial F_{kl}}. \end{aligned}$$
(A.5)

The second term of Eq. (A.5), the derivative of the inverse of a tensor with respect to itself, is given by A.6.

$$\begin{aligned} \dfrac{\partial F^{-1}_{jp}}{\partial F_{kl}}=- F^{-1}_{lp}F^{-1}_{jk} \end{aligned}$$
(A.6)

To obtain first term of Eq. (A.5), the expression in derivatives of Eq. (A.2) is multiplied by a small time increment yielding into A.7.

$$\begin{aligned} \delta \varvec{\tau } - \delta \mathbf {w} \cdot \varvec{\tau }-\varvec{\tau }\cdot \delta \mathbf {w}^T= J \ \mathbb {C}^{ab} : \delta \mathbf {d} \end{aligned}$$
(A.7)

and reordering the equation, the Abaqus tangent can be written as

$$\begin{aligned} \delta \varvec{\tau } = J \ \mathbb {C}^{ab} : \delta \mathbf {d} +\delta \mathbf {w} \cdot \varvec{\tau } +\varvec{\tau }\cdot \delta \mathbf {w}^T \end{aligned}$$
(A.8)

where \(\delta \mathbf {d}\) and \(\delta \mathbf {w}\) are obtained as function of \(\mathbf {F}\) and \(\delta \mathbf {F}\) by

$$\begin{aligned} \delta \mathbf {d}= \frac{1}{2}\left[ \delta \mathbf {F}\cdot \mathbf {F}^{-1}+\left( \delta \mathbf {F}\cdot \mathbf {F}^{-1}\right) ^{T}\right] \end{aligned}$$
(A.9)

and

$$\begin{aligned} \delta \mathbf {w}= \frac{1}{2}\left[ \delta \mathbf {F}\cdot \mathbf {F}^{-1}-\left( \delta \mathbf {F}\cdot \mathbf {F}^{-1}\right) ^{T}\right] . \end{aligned}$$
(A.10)

Replacing these expressions Eqs. (A.9) and (A.10) into Eq. (A.8), it is obtained

$$\begin{aligned} \delta \varvec{\tau }= & {} J \ \mathbb {C}^{ab} : \frac{1}{2}\left[ \delta \mathbf {F}\cdot \mathbf {F}^{-1} + \left( \delta \mathbf {F}\cdot \mathbf {F}^{-1}\right) ^{T}\right] \nonumber \\&+\,\frac{1}{2}\left[ \delta \mathbf {F}\cdot \mathbf {F}^{-1}-\left( \delta \mathbf {F}\cdot \mathbf {F}^{-1}\right) ^{T}\right] \cdot \varvec{\tau } \nonumber \\&+\,\varvec{\tau }\cdot \frac{1}{2}\left[ \delta \mathbf {F}\cdot \mathbf {F}^{-1}-\left( \delta \mathbf {F}\cdot \mathbf {F}^{-1}\right) ^{T}\right] ^T. \end{aligned}$$
(A.11)

Now, the Kirchhoff stress is also linearized respect the perturbation of the deformation gradient

$$\begin{aligned} \delta \varvec{\tau } = \frac{\delta \varvec{\tau }}{\delta \mathbf {F}} : \delta \mathbf {F} \text { in index } \delta \tau _{ip} = \frac{\partial \tau _{ip}}{\partial F_{kl}} \delta F_{kl}. \end{aligned}$$
(A.12)

If Eq. A.11 is written in index notation, the resulting expression reads as

$$\begin{aligned} \delta \tau _{ip}= & {} \frac{J}{2} C^{ab}_{ipkm} \delta F _{kl} F^{-1}_{lm} + \frac{J}{2} C^{ab}_{ipmk} F^{-1}_{lm} \delta F _{kl}\nonumber \\&+\, \frac{1}{2} I_{ipkq} \delta F_{kl} F^{-1}_{lm} \tau _{mq} - \frac{1}{2} I_{ipmq} F^{-1}_{lm} \delta F_{kl} \tau _{kq} \nonumber \\&+\, \frac{1}{2} I_{ipqk} \tau _{qm} F^{-1}_{lm} \delta F_{kl} - \frac{1}{2} I_{ipqm} \tau _{qk} F^{-1}_{lm} \delta F_{kl} \end{aligned}$$
(A.13)

and comparing the terms of the last two Eqs. (A.12) and (A.13), considering the minor symmetries of \(\mathbb {C}^{ab}\) and the symmetry of \(\varvec{\tau }\), the resulting expression is:

$$\begin{aligned} \frac{\partial \tau _{ip}}{\partial F_{kl}}= & {} J \ C^{ab}_{ipkm} F^{-1}_{lm} \nonumber \\&+\,\frac{1}{2} \delta _{ik} \delta _{pq} F^{-1}_{lm} \tau _{mq} - \frac{1}{2} \delta _{im} \delta _{pq} F^{-1}_{lm} \tau _{kq} \nonumber \\&+\,\frac{1}{2} \delta _{iq} \delta _{pk} F^{-1}_{lm} \tau _{qm} - \frac{1}{2} \delta _{iq} \delta _{pm} F^{-1}_{lm} \tau _{qk}, \end{aligned}$$
(A.14)

which can be simplified to

$$\begin{aligned} \frac{\partial \tau _{ip}}{\partial F_{kl}}= & {} J \ C^{ab}_{ipkm} F^{-1}_{lm} \nonumber \\&+\,\frac{1}{2} \delta _{ik} F^{-1}_{lm} \tau _{mp} - \frac{1}{2} F^{-1}_{li} \tau _{kp} \nonumber \\&+\,\frac{1}{2} \delta _{pk} F^{-1}_{lm} \tau _{im} - \frac{1}{2} F^{-1}_{lp} \tau _{ik}. \end{aligned}$$
(A.15)

Finally, introducing Eq. (A.15) in the definition of the material tangent (Eq. A.5) the final expression for the material tangent used in the FFT approach as function of the Abaqus tangent is given by

$$\begin{aligned} K_{ijkl}= & {} \left( J \ C^{ab}_{ipkm} F^{-1}_{lm} + \frac{1}{2} \delta _{ik} F^{-1}_{lm} \tau _{mp} - \frac{1}{2} F^{-1}_{li} \tau _{kp} \right. \nonumber \\&\left. +\, \frac{1}{2} \delta _{pk} F^{-1}_{lm} \tau _{im}-\frac{1}{2} F^{-1}_{lp} \tau _{ik}\right) F^{-1}_{jp}- \tau _{ip} F^{-1}_{lp} F^{-1}_{jk}. \end{aligned}$$
(A.16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucarini, S., Segurado, J. On the accuracy of spectral solvers for micromechanics based fatigue modeling. Comput Mech 63, 365–382 (2019). https://doi.org/10.1007/s00466-018-1598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1598-1

Keywords

Navigation