Skip to main content
Log in

A model-adaptivity method for the solution of Lennard-Jones based adhesive contact problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The surface micro-interaction model of Lennard-Jones (LJ) is used for adhesive contact problems (ACP). To address theoretical and numerical pitfalls of this model, a sequence of partitions of contact models is adaptively constructed to both extend and approximate the LJ model. It is formed by a combination of the LJ model with a sequence of shifted-Signorini (or, alternatively, -Linearized-LJ) models, indexed by a shift parameter field. For each model of this sequence, a weak formulation of the associated local ACP is developed. To track critical localized adhesive areas, a two-step strategy is developed: firstly, a macroscopic frictionless (as first approach) linear-elastic contact problem is solved once to detect contact separation zones. Secondly, at each shift-adaptive iteration, a micro-macro ACP is re-formulated and solved within the multiscale Arlequin framework, with significant reduction of computational costs. Comparison of our results with available analytical and numerical solutions shows the effectiveness of our global strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Anciaux G, Ramisetti SB, Molinari JF (2012) A finite temperature bridging domain method for md-fe coupling and application to a contact problem. Comput Methods Appl Mech Eng 205:204–212

    Article  Google Scholar 

  2. Babuška I (1973) The finite element method with lagrangian multipliers. Numer Math 20(3):179–192

    Article  MathSciNet  Google Scholar 

  3. Belgacem FB, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271

    Article  MathSciNet  Google Scholar 

  4. Ben Dhia H (1988) Modelling and solution by penalty duality method of unilateral contact problems. Calcul Struct Intell Artif 2:3–18

    Google Scholar 

  5. Ben Dhia H (1995) Mathematical analysis of non-linear thin plate problems of mindlin-naghdi-reissner type existence of solutions under optimal hypotheses. C R Acad Sci 1(1):1545–1552

    MathSciNet  MATH  Google Scholar 

  6. Ben Dhia H (1997) Plaques en grandes transformations élastiques sous contact hyperélastique. In: Actes du 3ème Colloque National de Calcul des Structures, Giens, vol 1, pp 465–470

  7. Ben Dhia H (1998) Multiscale mechanical problems: the Arlequin method. C R Acad Sci Ser IIB Mech Phys Astron 326(12):899–904

    MATH  Google Scholar 

  8. Ben Dhia H (1999) Numerical modelling of multiscale problems: the Arlequin method. In: CD Proceedings of ECCM’99, Munchen

  9. Ben Dhia H (2003) Aspects géométriques numériques micro-macro des interfaces. In: Modèles et Lois d’Interface pour le Contact. LMA-Marseilles

  10. Ben Dhia H (2006) Global-local approaches: the Arlequin framework. Eur J Comput Mech 15(1–3):67–80

    Article  Google Scholar 

  11. Ben Dhia H (2008) Further insights by theoretical investigations of the multiscale Arlequin method. Int J Multiscale Comput Eng 6(3):215–232

    Article  Google Scholar 

  12. Ben Dhia H, Elkhodja N, Roux FX (2008) Multimodeling of multi-alterated structures in the Arlequin framework: solution with a domain-decomposition solver. Eur J Comput Mech 17(5–7):969–980

    Article  Google Scholar 

  13. Ben Dhia H, Rateau G (2001) Mathematical analysis of the mixed Arlequin method. C R Acad Sci Ser I Math 332(7):649–654

    MathSciNet  MATH  Google Scholar 

  14. Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Meth Eng 62(11):1442–1462

    Article  Google Scholar 

  15. Ben Dhia H, Torkhani M (2011) Modeling and computation of fretting wear of structures under sharp contact. Int J Numer Meth Eng 85(1):61–83

    Article  Google Scholar 

  16. Ben Dhia H, Torkhani M, Zammali C (2005) Modèle d’interface multi-niveau pour les problèmes de contact. In: Colloque National de Calcul des Structures, Giens 2005, vol 1. Hermès Lavoisier, pp 63–68

  17. Ben Dhia H, Zammali C (2004) Level-sets and Arlequin framework for dynamic contact problems. Rev Eur Elem 13(5–7):403–414

    MATH  Google Scholar 

  18. Ben Dhia H, Zammali C (2007) Level-sets fields, placement and velocity based formulations of contact-impact problems. Int J Numer Meth Eng 69(13):2711–2735

    Article  MathSciNet  Google Scholar 

  19. Ben Dhia H, Zarroug M (2002) Contact in the Arlequin framework. In: Contact mechanics. Springer, pp 403–410

  20. Ben Dhia H, Zarroug M (2002) Hybrid frictional contact particles-in elements. Rev Eur Elem 11(2–4):417–430

    MATH  Google Scholar 

  21. Boussinesq J (1885) Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques. Gauthier-Villars, Paris

  22. Bradley RS (1932) Lxxix. The cohesive force between solid surfaces and the surface energy of solids. Philos Mag J Sci 13(86):853–862

    Article  Google Scholar 

  23. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev Fr Automat Inf Rech Oper Anal Numer 8(R2):129–151

    MathSciNet  MATH  Google Scholar 

  24. Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34(1–3):15–3104

    Google Scholar 

  25. Derjaguin BV (1934) Untersuchungen über die reibung und adhäsion, iv. Colloid Polym Sci 69(2):155–164

    Google Scholar 

  26. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326

    Article  Google Scholar 

  27. Dimitri R, De Lorenzis L, Scott M, Wriggers P, Taylor R, Zavarise G (2014) Isogeometric large deformation frictionless contact using t-splines. Comput Methods Appl Mech Eng 269:394–414

    Article  MathSciNet  Google Scholar 

  28. Feng JQ (2000) Contact behavior of spherical elastic particles: a computational study of particle adhesion and deformations. Colloids Surf A 172(1):175–198

    Article  Google Scholar 

  29. Feng JQ (2001) Adhesive contact of elastically deformable spheres: a computational study of pull-off force and contact radius. J Colloid Interface Sci 238(2):318–323

    Article  Google Scholar 

  30. Greenwood J (1997) Adhesion of elastic spheres. Proc R Soc Lond A Math Phys Eng Sci 453(1961):1277–1297

    Article  MathSciNet  Google Scholar 

  31. Greenwood J, Williamson JP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A Math Phys Eng Sci 295:300–319

    Article  Google Scholar 

  32. Hoang TV, Wu L, Paquay S, Golinval JC, Arnst M, Noels L (2017) A computational stochastic multiscale methodology for mems structures involving adhesive contact. Tribol Int 110:401–425

    Article  Google Scholar 

  33. Johnson K (1987) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  34. Johnson K (1998) Mechanics of adhesion. Tribol Int 31(8):413–418

    Article  Google Scholar 

  35. Johnson K, Kendall K, Roberts A (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A Math Phys Eng Sci 324(1558):301–313

    Article  Google Scholar 

  36. Kloosterman G, van Damme RM, van den Boogaard AH, Huetink J (2001) A geometrical-based contact algorithm using a barrier method. Int J Numer Meth Eng 51(7):865–882

    Article  MathSciNet  Google Scholar 

  37. Konyukhov A, Schweizerhof K (2008) On the solvability of closest point projection procedures in contact analysis: analysis and solution strategy for surfaces of arbitrary geometry. Comput Methods Appl Mech Eng 197(33):3045–3056

    Article  MathSciNet  Google Scholar 

  38. Laursen TA (2003) Computational contact and impact mechanics: fundamentals of modelling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    Book  Google Scholar 

  39. Maday Y, Mavriplis C, Patera A (1989) Nonconforming mortar element methods: application to spectral discretizations. In: Chan T, Glowinski R, Periaux J, Widlund OB (eds) Domain decomposition methods. SIAM, Philadelphia, pp 392–418

  40. Maugis D (1992) Adhesion of spheres: the jkr-dmt transition using a dugdale model. J Colloid Interface Sci 150(1):243–269

    Article  Google Scholar 

  41. Medina S, Dini D (2014) A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. Int J Solids Struct 51(14):2620–2632

    Article  Google Scholar 

  42. Muller V, Yushchenko V, Derjaguin B (1980) On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J Colloid Interface Sci 77(1):91–101

    Article  Google Scholar 

  43. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6):601–629

    Article  Google Scholar 

  44. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55(6):495–533

    Article  Google Scholar 

  45. Sauer RA (2011) Enriched contact finite elements for stable peeling computations. Int J Numer Methods Eng 87(6):593–616

    Article  MathSciNet  Google Scholar 

  46. Sauer RA (2016) A survey of computational models for adhesion. J Adhes 92(2):81–120

    Article  Google Scholar 

  47. Sauer RA, Li S (2007) An atomic interaction-based continuum model for adhesive contact mechanics. Finite Elem Anal Des 43(5):384–396

    Article  MathSciNet  Google Scholar 

  48. Sauer RA, Li S (2007) An atomic interaction-based continuum model for computational multiscale contact mechanics. PAMM 7(1):4080,029–4080,030

    Article  Google Scholar 

  49. Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58(1):2–13

    Article  Google Scholar 

  50. Tur M, Giner E, Fuenmayor F, Wriggers P (2012) 2d contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng 247:1–14

    Article  MathSciNet  Google Scholar 

  51. Wellmann C, Wriggers P (2011) A concurrent multiscale approach to non-cohesive granular materials. In: Recent developments and innovative applications in computational mechanics. Springer, pp 257–264

  52. Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2(4):1–49

    Article  MathSciNet  Google Scholar 

  53. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  54. Wriggers P, Rust W, Reddy B (2016) A virtual element method for contact. Comput Mech 58(6):1039–1050

    Article  MathSciNet  Google Scholar 

  55. Wu JJ (2006) Nanoadhesion between a rigid circular disc and an infinite elastic surface. Int J Solids Struct 43(6):1624–1637

    Article  Google Scholar 

  56. Zavarise G, Wriggers P, Schrefler B (1998) A method for solving contact problems. Int J Numer Methods Eng 42(3):473–498

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hachmi Ben Dhia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Dhia, H., Du, S. A model-adaptivity method for the solution of Lennard-Jones based adhesive contact problems. Comput Mech 62, 1543–1562 (2018). https://doi.org/10.1007/s00466-018-1578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1578-5

Keywords

Navigation