Skip to main content
Log in

Large deformation frictional contact analysis with immersed boundary method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth stress field as stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery. The parametric definition of the CAD surfaces (usually NURBS) is considered in the definition of the contact kinematics in order to obtain an enhanced measure of the contact gap. The numerical examples show the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. ANSYS\(^{\textregistered }\) Academic Research Mechanical, Release 16.2

  2. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375. https://doi.org/10.1016/0045-7825(91)90022-X

  3. Annavarapu C, Hautefeuille M, Dolbow JE (2012) Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int J Numer Methods Eng 92(June):206–228. https://doi.org/10.1002/nme.4343

    Article  MathSciNet  MATH  Google Scholar 

  4. Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng 268:417–436. https://doi.org/10.1016/j.cma.2013.09.002

    Article  MathSciNet  MATH  Google Scholar 

  5. Annavarapu C, Settgast RR, Johnson SM, Fu P, Herbold EB (2015) A weighted nitsche stabilized method for small-sliding contact on frictional surfaces. Comput Methods Appl Mech Eng 283:763–781. https://doi.org/10.1016/j.cma.2014.09.030

  6. Baiges J, Codina R, Henke F, Shahmiri S, Wall WA (2012) A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int J Numer Methods Eng 90(5):636–658. https://doi.org/10.1002/nme.3339

    Article  MathSciNet  MATH  Google Scholar 

  7. Béchet É, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78(8):931–954. https://doi.org/10.1002/nme.2515

    Article  MathSciNet  MATH  Google Scholar 

  8. Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954. https://doi.org/10.1002/nme.2515

    Article  MathSciNet  MATH  Google Scholar 

  9. Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271. https://doi.org/10.1016/S0895-7177(98)00121-6

  10. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20. https://doi.org/10.1007/s00466-011-0623-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric Analysis and thermomechanical Mortar contact problems. Comput Methods Appl Mech Eng 274:192–212. https://doi.org/10.1016/j.cma.2014.02.012

  12. Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190:6825–6846. https://doi.org/10.1016/S0045-7825(01)00260-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Dolbow JE, Devan a (2004) Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test. Int J Numer Methods Eng 59(1):47–67. https://doi.org/10.1002/nme.862

    Article  MATH  Google Scholar 

  14. Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37–40):5020–5036. https://doi.org/10.1016/j.cma.2005.09.025

  15. Giovannelli L, Ródenas J, Navarro-Jiménez J, Tur M (2017) Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elem Anal Des. https://doi.org/10.1016/j.finel.2017.07.010

    Google Scholar 

  16. Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng. https://doi.org/10.1002/nme.2907

    MathSciNet  MATH  Google Scholar 

  17. Hammer ME (2013) Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Comput Mech 51(6):975–998. https://doi.org/10.1007/s00466-012-0780-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Hansbo P, Rashid A, Salomonsson K (2015) Least-squares stabilized augmented Lagrangian multiplier method for elastic contact. Finite Elem Anal Des 116:32–37. https://doi.org/10.1016/j.finel.2016.03.005

    Article  MathSciNet  Google Scholar 

  19. Haslinger J, Renard Y (2009) A new fictitious domain approach inspired by the extended finite element method. SIAM J Numer Anal 47(2):1474–1499. https://doi.org/10.1137/070704435

    Article  MathSciNet  MATH  Google Scholar 

  20. Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90:40–64. https://doi.org/10.1002/nme.3306

    Article  MathSciNet  MATH  Google Scholar 

  21. Heintz P, Hansbo P (2006) Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng 195(33–36):4323–4333. https://doi.org/10.1016/j.cma.2005.09.008

  22. Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195. https://doi.org/10.1016/j.cma.2004.10.008

  23. Laursen T (2003) Computational contact and impact mechanics: fundamentals of modelling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    Book  Google Scholar 

  24. Liu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng 76(June):1489–1512. https://doi.org/10.1002/nme.2376

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu F, Borja RI (2010) Stabilized low-order finite elements for frictional contact with the extended finite element method. Comput Methods Appl Mech Eng 199(37–40):2456–2471. https://doi.org/10.1016/j.cma.2010.03.030

    Article  MathSciNet  MATH  Google Scholar 

  26. Marco O, Sevilla R, Zhang Y, Ródenas JJ, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103(6):445–468. https://doi.org/10.1002/nme.4914

    Article  MathSciNet  MATH  Google Scholar 

  27. Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor FJ (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal 2013:1–19. https://doi.org/10.1155/2013/953786

  28. Neto D, Oliveira M, Menezes L, Alves J (2016) A contact smoothing method for arbitrary surface meshes using nagata patches. Comput Methods Appl Mech Eng 299:283–315. https://doi.org/10.1016/j.cma.2015.11.011

  29. Nistor I, Guiton MLE, Massin P, Moës N, Géniaut S (2009) An X-FEM approach for large sliding contact along discontinuities. Int J Numer Methods Eng 78:1407–1435. https://doi.org/10.1002/nme.2532

    Article  MATH  Google Scholar 

  30. Oliver J, Hartmann S, Cante JC, Weyler R, Hernández JA (2009) A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Comput Methods Appl Mech Eng 198:2591–2606. https://doi.org/10.1016/j.cma.2009.03.006

  31. Piegl L, Tiller W (1995) The NURBS Book. Springer, Berlin

    Book  MATH  Google Scholar 

  32. Pietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comput Methods Appl Mech Eng 177(3–4):351–381. https://doi.org/10.1016/S0045-7825(98)00388-0

  33. Poulios K, Renard Y (2015) An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput Struct 153:75–90. https://doi.org/10.1016/j.compstruc.2015.02.027

    Article  Google Scholar 

  34. Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45–47):4891–4913. https://doi.org/10.1016/j.cma.2004.06.001

    Article  MathSciNet  MATH  Google Scholar 

  35. Renard Y (2013) Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput Methods Appl Mech Eng 256:38–55. https://doi.org/10.1016/j.cma.2012.12.008

    Article  MathSciNet  MATH  Google Scholar 

  36. Ribeaucourt R, Baietto-Dubourg MC, Gravouil A (2007) A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method. Comput Methods Appl Mech Eng 196:3230–3247. https://doi.org/10.1016/j.cma.2007.03.004

    Article  MathSciNet  MATH  Google Scholar 

  37. Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: The SPR-C technique. Int J Numer Methods Eng 70:705–727. https://doi.org/10.1002/nme.1903

    Article  MATH  Google Scholar 

  38. Rogers DF (2001) An introduction to NURBS: with historical perspective. Elsevier, Amsterdam

    Google Scholar 

  39. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128. https://doi.org/10.1016/j.cma.2011.10.014

    Article  MathSciNet  MATH  Google Scholar 

  40. Tur M, Albelda J, Marco O, Ródenas JJ (2015) Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Comput Methods Appl Mech Eng 296:352–375. https://doi.org/10.1016/j.cma.2015.08.001

    Article  MathSciNet  Google Scholar 

  41. Tur M, Albelda J, Navarro-Jimenez JM, Rodenas JJ (2015) A modified perturbed Lagrangian formulation for contact problems. Comput Mech. https://doi.org/10.1007/s00466-015-1133-6

    MathSciNet  MATH  Google Scholar 

  42. Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198(37–40):2860–2873. https://doi.org/10.1016/j.cma.2009.04.007

    Article  MathSciNet  MATH  Google Scholar 

  43. Tur M, Giner E, Fuenmayor F, Wriggers P (2012) 2d contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng 247–248:1–14. https://doi.org/10.1016/j.cma.2012.08.002

  44. Wriggers P (2006) Computational contact mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  45. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin. https://doi.org/10.1007/978-3-540-71001-1

  46. Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225. https://doi.org/10.1002/nme.1222

    Article  MathSciNet  MATH  Google Scholar 

  47. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods. https://doi.org/10.1002/nme.1620330702

Download references

Acknowledgements

The authors wish to thank the Spanish Ministerio de Economia y Competitividad the Generalitat Valenciana and the Universitat Politècnica de València for their financial support received through the projects DPI2013-46317-R, Prometeo 2016/007 and the FPI2015 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Navarro-Jiménez.

Appendices

Variation of normal and tangent vectors

We recall here (15) for the calculation of \(\delta \mathbf n ^{(1)}\).

$$\begin{aligned} \mathbf{n ^{(1)}}&=\frac{{\hat{\mathbf{n }}^{(1)}}}{||\hat{\mathbf{n }}^{(1)}||}; \qquad {\hat{\mathbf{n }}^{(1)}} = \mathbf s ^{(1)}_{\xi }\times \mathbf s ^{(1)}_{\eta }\end{aligned}$$
(51)
$$\begin{aligned} \delta \mathbf n ^{(1)}&=\frac{\delta \mathbf s ^{(1)}_{\xi }\times \mathbf s ^{(1)}_{\eta }+\mathbf s ^{(1)}_{\xi }\times \delta \mathbf s ^{(1)}_{\eta }}{\left\| \hat{\mathbf{n }}^{(1)}\right\| }\nonumber \\&\quad -\,\frac{\mathbf{n ^{(1)}}}{\left\| {\hat{\mathbf{n }}^{(1)}}\right\| } \left[ \mathbf n ^{(1)}\cdot (\delta \mathbf s ^{(1)}_{\xi }\times \mathbf s ^{(1)}_{\eta }+\mathbf s ^{(1)}_{\xi }\times \delta \mathbf s ^{(1)}_{\eta })\right] \end{aligned}$$
(52)

For the calculation of the variation of the tangent vectors \(\mathbf s ^{(1)}_{\xi }\) and \(\mathbf s ^{(1)}_{\eta }\) we start from (16). We will only describe the calculation of \(\delta \mathbf s ^{(1)}_{\xi }\) as the other term, \(\delta \mathbf s ^{(1)}_{\eta }\), has an identical procedure:

$$\begin{aligned} \mathbf s ^{(1)}_{\xi }&=\,\frac{\partial \mathbf x ^{(1)}}{\partial \xi }=\frac{\partial S(\xi ,\eta )}{\partial \xi }\nonumber \\&\quad +\,\sum _j\left( \frac{\partial N_j}{\partial \zeta ^e_1} \frac{\partial \zeta ^e_1}{\partial \xi }+\frac{\partial N_j}{\partial \zeta ^e_2}\frac{\partial \zeta ^e_2}{\partial \xi }+\frac{\partial N_j}{\partial \zeta ^e_3} \frac{\partial \zeta ^e_3}{\partial \xi }\right) \mathbf u ^{(1)}_j \end{aligned}$$
(53)
$$\begin{aligned} \delta \mathbf s ^{(1)}_{\xi }&=\delta \left( \frac{\partial \mathbf x ^{(1)}}{\partial \xi }\right) =\frac{\partial \delta \mathbf u ^{(1)}}{\partial \xi }\nonumber \\&=\sum _j \left( \frac{\partial N_j}{\partial \zeta ^e_1}\frac{\partial \zeta ^e_1}{\partial \xi }+\frac{\partial N_j}{\partial \zeta ^e_2}\frac{\partial \zeta ^e_2}{\partial \xi } +\frac{\partial N_j}{\partial \zeta ^e_3}\frac{\partial \zeta ^e_3}{\partial \xi }\right) \delta \mathbf u ^{(1)}_j \end{aligned}$$
(54)

The linearization of all these variables has the same structure as the variation, so the variations \(\delta \mathbf n ^{(1)}\), \(\delta \mathbf s ^{(1)}_{\xi }\) and \(\delta \mathbf s ^{(1)}_{\eta }\) can be directly substituted for the increments \(\varDelta \mathbf n ^{(1)}\) , \(\varDelta \mathbf s ^{(1)}_{\xi }\) and \(\varDelta \mathbf s ^{(1)}_{\eta }\).

Linearization of \(\varDelta ^t\mathbf g _t\)

We recall the definition of \(\varDelta ^t\mathbf g _t\) here:

$$\begin{aligned} \varDelta ^t\mathbf g _t= \frac{\mathbf{p }_T-\frac{\kappa E}{h}\mathbf{T }_n\left( \mathbf x ^{(1)}-\mathbf{x }^{(2)}\left( \varvec{\xi }_t\right) \right) }{\left\| \mathbf{p }_T-\frac{\kappa E}{h}\mathbf{T }_n\left( \mathbf x ^{(1)}-\mathbf{x }^{(2)}\left( \varvec{\xi }_t\right) \right) \right\| } \end{aligned}$$
(55)

If we use the simplification of (56), the linearization of \(\varDelta ^t\mathbf g _t\) can be expressed as in (57)

$$\begin{aligned} \varDelta ^t\mathbf g _t= & {} \,\frac{\hat{\mathbf{d }}}{||\hat{\mathbf{d }}||}; \qquad \hat{\mathbf{d }}= \mathbf p _T+\frac{\kappa E}{h}\mathbf T _n\left( \mathbf x ^{(2)}\left( \varvec{\xi }_t\right) -\mathbf x ^{(1)}\right) \nonumber \\\end{aligned}$$
(56)
$$\begin{aligned} \varDelta \varDelta ^t\mathbf g _t= & {} \,\frac{\varDelta \hat{\mathbf{d }}}{\left\| \hat{\mathbf{d }}\right\| }-\frac{\varDelta ^t\mathbf g _t}{\left\| \hat{\mathbf{d }}\right\| }\left[ \varDelta ^t\mathbf g _t\cdot \varDelta \hat{\mathbf{d }}\right] \end{aligned}$$
(57)

Finally, for the linearization of \(\hat{\mathbf{d }}\) we can rearrange Eq. (56) as:

$$\begin{aligned} \hat{\mathbf{d }}=\mathbf p _T+\frac{\kappa E}{h}\left\{ \left( \mathbf x ^{(2)}-\mathbf x ^{(1)}\right) -\left[ \left( \mathbf x ^{(2)}-\mathbf x ^{(1)}\right) \cdot \mathbf n ^{(1)}\right] \mathbf n ^{(1)}\right\} \end{aligned}$$
(58)

With this definition we have a clearer linearization term, which is the following:

$$\begin{aligned} \varDelta \hat{\mathbf{d }}= & {} \,\frac{\kappa E}{h}\left\{ \varDelta \mathbf u - \left[ \varDelta \mathbf u \cdot \mathbf n ^{(1)}+ \left( \mathbf x ^{(2)}-\mathbf x ^{(1)}\right) \cdot \varDelta \mathbf n ^{(1)}\right] \mathbf n ^{(1)}\right. \nonumber \\&\left. +\,\left[ \left( \mathbf x ^{(2)}-\mathbf x ^{(1)}\right) \cdot \mathbf n ^{(1)}\right] \varDelta \mathbf n ^{(1)}\right\} \end{aligned}$$
(59)

where \(\varDelta \mathbf u = \varDelta \mathbf u ^{(2)}\left( \varvec{\xi }_t\right) -\varDelta \mathbf u ^{(1)}\). Notice that the local coordinates of the master body are not unknowns, but the coordinates from the last converged step.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro-Jiménez, J.M., Tur, M., Albelda, J. et al. Large deformation frictional contact analysis with immersed boundary method. Comput Mech 62, 853–870 (2018). https://doi.org/10.1007/s00466-017-1533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1533-x

Keywords

Navigation