Skip to main content
Log in

Towards practical multiscale approach for analysis of reinforced concrete structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM (2008) Sustainable development and climate changes initiatives. Cem Concr Res 38:115–127

    Article  Google Scholar 

  2. American Concrete Institute (2014) Building code requirements for structural concrete ACI-318

  3. International Federation for Structural Concrete fib CEB-FIP (2010) fib Model Code for Concrete Structures. ISBN: 978-3-433-03061-5

  4. Emery JM, Hochhalther JD, Ingraffea AR (2007) Computational fracture mechanics of concrete structures: a retrospective through multiple lenses. FraMCos-6 Catania (Italy)

  5. Bazant Z, Caner F, Carol I, Adley M, Akers S (2000) Microplane model M4 for concrete. I: Formulation with work-conjugate deviatoric stress. J Eng Mech ASCE 126(9):944–953

    Article  Google Scholar 

  6. Lilliu G, van Mier JGM (2003) 3D lattice type fracture model for concrete. Eng Fract Mech 70:927–941

    Article  Google Scholar 

  7. Fillipou FC, Spacone E, Taucer FF (1991) A fiber beam-column element for seismic response analysis of reinforced concrete structures, Report No. UCB/EERC-91/17. Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley

  8. Mohr S, Bairán J, Marí A (2010) A frame element model for the analysis of reinforced concrete structures under shear and bending. Eng Struct 32:3936–3954

    Article  Google Scholar 

  9. Willam KJ, Warnke EP (1974) Constitutive model for the triaxial behavior of concrete. IABSE reports on the working commissions. https://doi.org/10.5169/seals-17526

  10. Pijaudier-Cabot G, Mazars J (2001) Damage models for concrete. Lemaitre handbook of materials behavior models. Academic Press, San Diego

    Google Scholar 

  11. Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading. J Eng Mech 124:892–900

    Article  Google Scholar 

  12. Grassl P, Xenos D, Nystrom U, Rempling R, Gylltoft K (2013) CDPM2: a damage-plasticity approach to modelling the failure of concrete. Int J Solids Struct 50(24):3805–3816

    Article  Google Scholar 

  13. Cervenka J, Cervenka V (2008) Three dimensional combined fracture-plastic material model for concrete including creep and rate effect for dynamic loading. Int J Plasiticy 24(12):2192–2220

    Article  MATH  Google Scholar 

  14. Moharrani M, Koutromanos I (2016) Triaxial constitutive model for concrete under cyclic loading. J Struct Eng 142(7):04016039

    Article  Google Scholar 

  15. Cuellar JR, Gallegos S (2004) Un modelo de filamentos para vigas-columnas de concreto, III Congreso Internacional sobre Métodos Numéricos en Ingeniería y Ciencias Aplicadas, Barcelona

  16. Maekawa K, Ishida T, Kishi T (2003) Multi-scale modeling of concrete performance. J Adv Concr Technol 1(2):91–126

    Article  Google Scholar 

  17. Oliver J, Caicedo M, Roubin E, Hernández JA (2014) Multi-scale (\(\text{ FE }^{2})\) analysis of material failure in cement/aggregate-type composite structures, Computational Modelling of Concrete Structures. Taylor & Francis Group, Oxford

    Google Scholar 

  18. Caballero A, López CM, Carol I (2006) 3D meso-structural analysis of concrete specimens under uniaxial tension. Comput Methods Appl Mech Eng 195:7182–7195

    Article  MATH  Google Scholar 

  19. Zhang JL, Liu X, Yuan Y, Mang HA (2014) A multiscale model for predicting the elasticity modulus and the strength of ultra-high performance fiber reinforced concrete, Computational Modeling of Concrete Structures. Taylor & Francis Group, Oxford

    Google Scholar 

  20. Rumanus E, Meschke G (2010) Homogenization-based model for reinforced concrete, computational modeling of concrete structures. Taylor & Francis Group, Oxford

    Google Scholar 

  21. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21:571–574

    Article  Google Scholar 

  22. Wu W, Yuan Z, Fish J (2010) Eigendeformation-based homogenization of concrete. Int J Multiscale Comput Eng 8(1):1–15

    Article  Google Scholar 

  23. Zohdi TI, Wriggers P (2005) Introduction to computational micromechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Fish J, Filonova V, Fafalis D (2015) Computational continua revisited. Int J Numer Meth Eng 102:332–378

    Article  MathSciNet  MATH  Google Scholar 

  25. Fish J (2014) Practical multiscaling. Wiley, Hoboken

    Google Scholar 

  26. Fish J, Filonova V, Yuan Z (2012) Reduced order computational continua. Comput Methods Appl Mech Eng 221–222:104–116

    Article  MathSciNet  MATH  Google Scholar 

  27. Fish J, Shek K, Pandheeradi Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148(1–2):53–73

    Article  MathSciNet  MATH  Google Scholar 

  28. Oskay C, Fish J (2007) Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput Methods Appl Mech Eng 196(7):1216–1243

    Article  MathSciNet  MATH  Google Scholar 

  29. Oskay C, Fish J (2008) On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems. Comput Mech 42(2):181–195

    Article  MATH  Google Scholar 

  30. Sparks P, Oskay C (2016) The method of failure paths for reduced-order computational homogenization. Int J Multiscale Comput Eng 14(5):515–534

    Article  Google Scholar 

  31. Zhang X, Oskay C (2015) Eigenstrain based reduced order homogenization for polycrystalline materials. Comput Methods Appl Mech Eng 297:408–436

    Article  MathSciNet  Google Scholar 

  32. Leonhardt F, Walther R (1962) Contribution to the treatment of shear in reinforced concrete, Technical Translation 1172. National Research Council of Canada

  33. Bresler B, Scordelis AC (1963) Shear strength of reinforced concrete beams title no 60–4. J Am Concr Inst 60(1):51–74

    Google Scholar 

  34. Hughes TJR, Feijóo GR, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24

    Article  MathSciNet  MATH  Google Scholar 

  35. Fish J (1992) The S-version of the finite element method. Comput Struct 43(3):539–547

    Article  MATH  Google Scholar 

  36. Filonova V, Fish J (2016) Computational continua for thick elastic layered structures. Int J Multiscale Comput Eng. https://doi.org/10.1615/Int.JMultCompEng.2016017568

  37. Fish J, Kuznetzov S (2010) Computational continua. Int J Numer Meth Eng 84:774–802

    Article  MathSciNet  MATH  Google Scholar 

  38. Reddy JN (1990) A general non-linear third-order theory of plates with moderate thickness. Int J Non-Linear Mech 25(6):677–686

    Article  MATH  Google Scholar 

  39. Reddy JN (1997) On locking-free shear deformable beam finite elements. Comput Methods Apps Mech Eng 149:113–132

    Article  MATH  Google Scholar 

  40. Bažant ZP, Pijaudier-Cabot G (1989) Measurement of characteristic length of nonlocal continuum. J Eng Mech 115(4):755–767

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Moyeda.

Appendix: Coarse-scale discretization

Appendix: Coarse-scale discretization

The shape functions that satisfy the displacement field described by Eqs. (25) through (27) are defined as

$$\begin{aligned} N^{c}=\left[ {{\begin{array}{ccc} {1-x_1 /L}&{} 0&{} 0 \\ {\frac{6\left( {L-x_1 } \right) x_1 x_2 }{L^{3}}}&{} {\frac{\left( {L-x_1 } \right) ^{2}\left( {L+2x_1 } \right) }{L^{3}}}&{} 0 \\ {\frac{6\left( {L-x_1 } \right) x_1 x_3 }{L^{3}}}&{} 0&{} {\frac{\left( {L-x_1 } \right) ^{2}\left( {L+2x_1 } \right) }{L^{3}}} \\ 0&{} {\left( {-1+\frac{x_1 }{L}} \right) x_3 }&{} {\frac{\left( {L-x_1 } \right) x_2 }{L}} \\ {\frac{\left( {L-3x_1 } \right) \left( {L-x_1 } \right) x_3 }{L^{2}}}&{} 0&{} {-\frac{\left( {L-x_1 } \right) ^{2}x_1 }{L^{2}}} \\ {-\frac{\left( {L-3x_1 } \right) \left( {L-x_1 } \right) x_2 }{L^{2}}}&{} {\frac{\left( {L-x_1 } \right) ^{2}x_1 }{L^{2}}}&{} 0 \\ {\frac{\left( {L-2x_1 } \right) \left( {L-x_1 } \right) x_3 \left( {1-\frac{4x_3^2 }{3h^{2}}} \right) }{L^{2}}}&{} 0&{} 0 \\ {\frac{\left( {L-2x_1 } \right) \left( {L-x_1 } \right) x_2 \left( {1-\frac{4x_2^2 }{3b^{2}}} \right) }{L^{2}}}&{} 0&{} 0 \\ {x_1 /L}&{} 0&{} 0 \\ {\frac{6x_1 \left( {-L+x_1 } \right) x_2 }{L^{3}}}&{} {\frac{\left( {3L-2x_1 } \right) x_1^2 }{L^{3}}}&{} 0 \\ {\frac{6x_1 \left( {-L+x_1 } \right) x_3 }{L^{3}}}&{} 0&{} {\frac{\left( {3L-2x_1 } \right) x_1^2 }{L^{3}}} \\ 0&{} {-\frac{x_1 x_3 }{L}}&{} {\frac{x_1 x_2 }{L}} \\ {\frac{x_1 \left( {-2L+3x_1 } \right) x_3 }{L^{2}}}&{} 0&{} {\frac{\left( {L-x_1 } \right) x_1^2 }{L^{2}}} \\ {\frac{\left( {2L-3x_1 } \right) x_1 x_2 }{L^{2}}}&{} {\frac{x_1^2 \left( {-L+x_1 } \right) }{L^{2}}}&{} 0 \\ {-\frac{\left( {L-2x_1 } \right) x_1 x_3 \left( {1-\frac{4x_3^2 }{3h^{2}}} \right) }{L^{2}}}&{} 0&{} 0 \\ {-\frac{\left( {L-2x_1 } \right) x_1 x_2 \left( {1-\frac{4x_2^2 }{3b^{2}}} \right) }{L^{2}}}&{} 0&{} 0 \\ {\frac{4\left( {L-x_1 } \right) x_1 x_3 \left( {1-\frac{4x_3^2 }{3h^{2}}} \right) }{L^{2}}}&{} 0&{} 0 \\ {\frac{4\left( {L-x_1 } \right) x_1 x_2 \left( {1-\frac{4x_2^2 }{3b^{2}}} \right) }{L^{2}}}&{} 0&{} 0 \\ \end{array} }} \right] ^{T} \end{aligned}$$
(59)

The family of \(g(\mathbf{x})\) functions corresponding to the Reddy [38] beam formulation are obtained by equating Eqs. (29) and (30), which yields

$$\begin{aligned}&g_1 =0 \end{aligned}$$
(60)
$$\begin{aligned}&g_2 =x_2 \end{aligned}$$
(61)
$$\begin{aligned}&g_3 =x_3 \end{aligned}$$
(62)
$$\begin{aligned}&g_{11} =0 \end{aligned}$$
(63)
$$\begin{aligned}&g_{12} =x_1 x_2 \end{aligned}$$
(64)
$$\begin{aligned}&g_{13} =x_1 x_3 \end{aligned}$$
(65)
$$\begin{aligned}&g_{22} =-\frac{h_2^{2}}{24}+\frac{x_2^{2}}{2} \end{aligned}$$
(66)
$$\begin{aligned}&g_{33} =-\,\frac{h_3^{2}}{24}+\frac{x_3^{2}}{2} \end{aligned}$$
(67)
$$\begin{aligned}&g_{122} =-\,\frac{1}{8}x_1 \left( {h_2^{2}-4x_2^{2}} \right) \end{aligned}$$
(68)
$$\begin{aligned}&g_{133} =-\,\frac{1}{8}x_1 \left( {h_3^{2}-4x_3^{2}} \right) \end{aligned}$$
(69)
$$\begin{aligned}&g_{222} =-\,\frac{1}{24}x_2 \left( {h_2^{2}-4x_2^{2}} \right) \end{aligned}$$
(70)
$$\begin{aligned}&g_{333} =-\,\frac{1}{24}x_3 \left( {h_3^{2}-4x_3^{2}} \right) \end{aligned}$$
(71)
$$\begin{aligned}&g_{1122} =\frac{1}{192}\left( {h_2^{2}-4x_2^{2}} \right) \left( {\left| \Theta \right| _1^{2}-12x_1^{2}} \right) \end{aligned}$$
(72)
$$\begin{aligned}&g_{1133} =\frac{1}{192}\left( {h_3^{2}-4x_3^{2}} \right) \left( {\left| \Theta \right| _1^{2}-12x_1^{2}} \right) \end{aligned}$$
(73)
$$\begin{aligned}&g_{1222} =\frac{1}{24}x_2 \left( {-h_2^{2}+4x_2^{2}} \right) x_1 \end{aligned}$$
(74)
$$\begin{aligned}&g_{1333} =\frac{1}{24}x_3 \left( {-h_3^{2}+4x_3^{2}} \right) x_1 \end{aligned}$$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyeda, A., Fish, J. Towards practical multiscale approach for analysis of reinforced concrete structures. Comput Mech 62, 685–700 (2018). https://doi.org/10.1007/s00466-017-1521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1521-1

Keywords

Navigation