Skip to main content

Advertisement

Log in

Isogeometric analysis of first and second strain gradient elasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The elastic energy in the conventional Cauchy continuum model depends on the gradient of the displacement field, which is not adequate to show the behavior of a system under point and line forces. Applying these kinds of boundary conditions to the continuum will lead to singularities. To overcome this problem, a generalization of the Cauchy continuum concept is a choice. In this paper, isogeometric analysis is used to simulate the behavior of second- and third-gradient materials. As expected, a significant improvement in the efficiency and accuracy of the attained results compared to the conventional finite element method is noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The CPU times are calculated on an Intel®CoreTM i7-4790 at 3.60 GHz clock speed with 32.0 GB of memory (DDR3-1600MHz) running Microsoft Windows 10 Pro (64-bit) for the finite element method results and Ubuntu 16.04 LTS (64-bit) for the isogeometric analysis results. The Intel®Pardiso sparse solver has been used for all the simulations

References

  1. Aifantis E (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30:1279–1299

    Article  MATH  Google Scholar 

  2. Alibert JJ, Della Corte A (2015) Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z Angew Math Phys 66(5):2855–2870

    Article  MathSciNet  MATH  Google Scholar 

  3. Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 8(1):51–73

    Article  MathSciNet  MATH  Google Scholar 

  4. Altenbach H, Eremeyev VA, Lebedev LP (2011) Micropolar shells as two-dimensional generalized continua models. In: Maugin GA, Metrikine AV (eds) Mechanics of generalized continua. Springer, New York, pp 23–55

    Chapter  Google Scholar 

  5. Altenbach J, Altenbach H, Eremeyev VA (2010) On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch Appl Mech 80(1):73–92

    Article  MATH  Google Scholar 

  6. Auricchio F, Calabr F, Hughes T, Reali A, Sangalli G (2012) A simple algorithm for obtaining nearly optimal quadrature rules for nurbs-based isogeometric analysis. Comput Methods Appl Mech Eng 249:15–27. doi:10.1016/j.cma.2012.04.014 (higher Order Finite Element and Isogeometric Methods)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertram A (2015) Finite gradient elasticity and plasticity: a constitutive mechanical framework. Contin Mech Thermodyn 27(6):1039–1058

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertram A (ed) (2017) Compendium on gradient materials, 3rd edn. Otto-von-Guericke-University, Magdeburg, 237 p. http://www.ifme.ovgu.de/ifme_media/FL/Publikationen/Compendium+on+Gradient+Materials_May+2017.pdf

  9. Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of nurbs. Int J Numer Methods Eng 87(1–5):15–47. doi:10.1002/nme.2968

    Article  MATH  Google Scholar 

  10. Calabr F, Sangalli G, Tani M (2017) Fast formation of isogeometric galerkin matrices by weighted quadrature. Comput Methods Appl Mech Eng 316:606–622. doi:10.1016/j.cma.2016.09.013 (special Issue on Isogeometric Analysis: Progress and Challenges)

    Article  MathSciNet  Google Scholar 

  11. Carcaterra A, dell’Isola F, Esposito R, Pulvirenti M (2015) Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch Ration Mech Anal. doi:10.1007/s00205-015-0879-5

  12. Carrella A, Ewins D (2011) Identifying and quantifying structural nonlinearities in engineering applications from measured frequency response functions. Mech Syst Signal Process 25(3):1011–1027

    Article  Google Scholar 

  13. Cauchy A (1850a) Mémoire sur les systèmes isotropes de points matériels, Oeuvres complètes, 1re Série - Tome II. Gauthier-Villars, Paris

    Google Scholar 

  14. Cauchy A (1850b) Mémoire sur les vibrations d’un double système de molécules et de l’éther continu dans un corps cristallisé. Oeuvres complètes, 1re Série - Tome II. Gauthier-Villars, Paris

    Google Scholar 

  15. Cauchy A (1851) Note sur l’équilibre et les mouvements vibratoires des corps solides. Oeuvres complètes, 1re Série - Tome XI. Gauthier-Villars, Paris

    Google Scholar 

  16. Cecchi A, Rizzi NL (2001) Heterogeneous elastic solids: a mixed homogenization–rigidification technique. Int J Solids Struct 38(1):29–36. doi:10.1016/S0020-7683(00)00018-4

    Article  MathSciNet  MATH  Google Scholar 

  17. Cottrell JA, Hughes TJR, Bazilevs Y (2009) NURBS as a pre-analysis tool: geometric design and mesh generation. In: Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester. doi:10.1002/9780470749081.ch2

  18. De Felice G, Rizzi N (1997) Homogenization for materials with microstructure. Am Soc Mech Eng Pres Ves Pip Div 369:33–38

    Google Scholar 

  19. Del Vescovo D, Fregolent A (2009) Theoretical and experimental dynamic analysis aimed at the improvement of an acoustic method for fresco detachment diagnosis. Mech Syst Signal Process 23(7):2312–2319

    Article  Google Scholar 

  20. dell’Isola F, Maier G, Perego U, Andreaus U, Esposito R, Forest S (2014) The complete works of Gabrio Piola: volume I—commented English translation. In: Advanced structured materials. doi:10.1007/978-3-319-00263-7

  21. dell’Isola F, Andreaus U, Placidi L (2015a) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8):887–928

    Article  MathSciNet  MATH  Google Scholar 

  22. dell’Isola F, Seppecher P, Della Corte A (2015b) The postulations á la d’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc R Soc Lond A Math 471(2183):20150415

    Article  MathSciNet  MATH  Google Scholar 

  23. dell’Isola F, Della Corte A, Greco L, Luongo A (2016) Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int J Solids Struct 81:1–12. doi:10.1016/j.ijsolstr.2015.08.029

    Article  Google Scholar 

  24. Dietrich L, Lekszycki T, Turski K (1998) Problems of identification of mechanical characteristics of viscoelastic composites. Acta Mech 126(1–4):153–167

    Article  MATH  Google Scholar 

  25. Dos Reis F, Ganghoffer JF (2012) Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput Struct 112:354–363

    Article  Google Scholar 

  26. Federico S, Grillo A (2012) Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech Mater 44:58–71

    Article  Google Scholar 

  27. Fischer P, Klassen M, Mergheim J, Steinmann P, Müller R (2011) Isogeometric analysis of 2D gradient elasticity. Comput Mech 47(3):325–334. doi:10.1007/s00466-010-0543-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Germain P (1973) The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J Appl Math 25(3):556–575

    Article  MATH  Google Scholar 

  29. Goda I, Assidi M, Ganghoffer JF (2013) Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J Mech Phys Solids 61(12):2537–2565

    Article  Google Scholar 

  30. Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Method Appl Mech Eng 194(39):4135–4195. doi:10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  31. Hughes T, Reali A, Sangalli G (2010) Efficient quadrature for nurbs-based isogeometric analysis. Comput Method Appl Mech Eng 199(5):301–313. doi:10.1016/j.cma.2008.12.004 (computational Geometry and Analysis)

    Article  MathSciNet  MATH  Google Scholar 

  32. Javili A, dell’Isola F, Steinmann P (2013) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12):2381–2401

    Article  MathSciNet  MATH  Google Scholar 

  33. Khakalo S, Niiranen J (2017) Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software. Isogeom Des Anal 82:154–169. doi:10.1016/j.cad.2016.08.005

    MathSciNet  Google Scholar 

  34. Lazar M, Maugin GA (2006) Dislocations in gradient elasticity revisited. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, vol 462, pp 3465–3480

  35. Lazar M (2013) The fundamentals of nano-singular dislocations in the theory of gradient elasticity: dislocation loops and straight dislocations. Int J Solids Struct 50:352–362

    Article  Google Scholar 

  36. Lazar M, Maugin GA, Aifantis EC (2006) Dislocations in second strain gradient elasticity. Int J Solids Struct 43:1787–1817

    Article  MATH  Google Scholar 

  37. Lekszycki T, Olhoff N, Pedersen JJ (1992) Modelling and identification of viscoelastic properties of vibrating sandwich beams. Compos Struct 22(1):15–31

    Article  Google Scholar 

  38. Liu J, Dedè L, Evans JA, Borden MJ, Hughes TJ (2013) Isogeometric analysis of the advective Cahn–Hilliard equation: spinodal decomposition under shear flow. J Comput Phys 242:321–350

    Article  MathSciNet  MATH  Google Scholar 

  39. Lu Y, Lekszycki T (2015) Modeling of an initial stage of bone fracture healing. Contin Mech Thermodyn 27(4):851–859

    Article  MathSciNet  MATH  Google Scholar 

  40. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438

    Article  Google Scholar 

  41. Mousavi SM, Paavola J (2014) Analysis of plate in second strain gradient elasticity. Arch Appl Mech 84(8):1135–1143. doi:10.1007/s00419-014-0871-9

    Article  MATH  Google Scholar 

  42. Niiranen J, Kiendl J, Niemi AH, Reali A (2016) Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates. Comput Method Appl Mech Eng. doi:10.1016/j.cma.2016.07.008

  43. Pideri C, Seppecher P (1997) A second gradient material resulting from the homogenization of a heterogeneous linear elastic medium. Contin Mech Thermodyn 9(5):241–257

    Article  MathSciNet  MATH  Google Scholar 

  44. Piegl L (1991) On NURBS: a survey. IEEE Comput Gr 11(1):55–71. doi:10.1109/38.67702

  45. Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  46. Placidi L, Andreaus U, Della Corte A, Lekszycki T (2015) Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z Angew Math Phys 66(6):3699–3725. doi:10.1007/s00033-015-0588-9

    Article  MathSciNet  MATH  Google Scholar 

  47. Placidi L, Andreaus U, Giorgio I (2016) Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J Eng Math. doi:10.1007/s10665-016-9856-8

    MATH  Google Scholar 

  48. Reiher JC, Giorgio I, Bertram A (2016) Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J Eng Mech-ASCE 143(2):04016112

    Article  Google Scholar 

  49. Selvadurai APS, Nikopour H (2012) Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: experiments, theory and computations. Compos Struct 94(6):1973–1981. doi:10.1016/j.compstruct.2012.01.019

    Article  Google Scholar 

  50. Seppecher P, Alibert JJ, dell’Isola F (2011) Linear elastic trusses leading to continua with exotic mechanical interactions. J Phys Conf Ser 319(1):012018

    Article  Google Scholar 

  51. Steigmann DJ, dell’Isola F (2015) Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech Sin 31(3):373–382. doi:10.1007/s10409-015-0413-x

    Article  MathSciNet  MATH  Google Scholar 

  52. Taylor RL (2014) FEAP—finite element analysis program. http://www.ce.berkeley/feap

  53. Tomic A, Grillo A, Federico S (2014) Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J Appl Math 79:1027–1059

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Francesco dell’Isola and his team in Rome (Italy) for providing the finite element results. The first and the second authors have been financially supported by Graduiertenkolleg 1554: Micro–Macro-Interactions in Structured Media and Particle Systems of the DFG (German Science Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Juhre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 116 KB)

Appendix: Global derivatives of shape functions

Appendix: Global derivatives of shape functions

Here we will show the process to transform the local derivatives of the shape functions (derivatives with respect to the parametric coordinates) to their global (spatial) counterparts. We will use the same approach employed by R.L.Taylor’s team in nurbFEAP [52] for the implementation of two-dimensional global second-derivatives and will expand it to three-dimensions and global third-derivatives.

The calculations here are independent of the shape function nature and demonstrate merely the mapping from local to global coordinates. For the calculations related to deriving the NURBS shape functions, we refer the reader to Cottrell et al. [17]. We will do the calculations for the most general case, i.e. \(\frac{\partial ^3 N_a}{\partial \xi \partial \eta \partial \zeta }\), all the other third derivatives are in fact parts of this one (e.g. replacing \(\eta \) with \(\xi \) results in \(\frac{\partial ^3 N_a}{\partial \xi ^2 \partial \zeta }\)).

First, we need to find the relation between the local and global first derivatives (i.e. \(\frac{\partial N_a}{\partial \xi }\) in terms of \(\frac{\partial N_a}{\partial x}\), \(\frac{\partial N_a}{\partial y}\) and \(\frac{\partial N_a}{\partial z}\)). Using the chain rule,

$$\begin{aligned}&\frac{\partial N_a}{\partial \xi } = \frac{\partial x}{\partial \xi } \cdot \frac{\partial N_a}{\partial x} + \frac{\partial y}{\partial \xi } \cdot \frac{\partial N_a}{\partial y} + \frac{\partial z}{\partial \xi } \cdot \frac{\partial N_a}{\partial z} ,&\end{aligned}$$
(15)

where (\(\frac{\partial x}{\partial \xi }, \cdots \)) are components of the Jacobian matrix. Deriving the relation for all the parametric directions (\(\xi \), \(\eta \), and \(\zeta \)), solving the following system of equations gives us the global first derivatives:

$$\begin{aligned}&\begin{Bmatrix} \frac{\partial N_a}{\partial \xi }\\ \frac{\partial N_a}{\partial \eta }\\ \frac{\partial N_a}{\partial \zeta } \end{Bmatrix} = \begin{bmatrix} \frac{\partial x }{\partial \xi }&\frac{\partial y }{\partial \xi }&\frac{\partial z }{\partial \xi } \\ \frac{\partial x }{\partial \eta }&\frac{\partial y }{\partial \eta }&\frac{\partial z }{\partial \eta } \\ \frac{\partial x }{\partial \zeta }&\frac{\partial y }{\partial \zeta }&\frac{\partial z }{\partial \zeta } \end{bmatrix} \cdot \begin{Bmatrix} \frac{\partial N_a}{\partial x}\\ \frac{\partial N_a}{\partial y}\\ \frac{\partial N_a}{\partial z} \end{Bmatrix} \end{aligned}$$
(16)
$$\begin{aligned}&\begin{Bmatrix} \frac{\partial N_a}{\partial x}\\ \frac{\partial N_a}{\partial y}\\ \frac{\partial N_a}{\partial z} \end{Bmatrix} = \begin{bmatrix} \frac{\partial x }{\partial \xi }&\frac{\partial y }{\partial \xi }&\frac{\partial z }{\partial \xi } \\ \frac{\partial x }{\partial \eta }&\frac{\partial y }{\partial \eta }&\frac{\partial z }{\partial \eta } \\ \frac{\partial x }{\partial \zeta }&\frac{\partial y }{\partial \zeta }&\frac{\partial z }{\partial \zeta } \end{bmatrix}^{-1} \cdot \begin{Bmatrix} \frac{\partial N_a}{\partial \xi }\\ \frac{\partial N_a}{\partial \eta }\\ \frac{\partial N_a}{\partial \zeta } \end{Bmatrix}.&\end{aligned}$$
(17)

The next step is to find the relation between second order derivatives.

$$\begin{aligned} \frac{\partial ^2 N_a}{\partial \xi \partial \eta }&= \frac{\partial }{\partial \eta } \bigg ( \frac{\partial N_a}{\partial \xi } \bigg )&\nonumber \\&= \frac{\partial }{\partial \eta } \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial N_a}{\partial x} + \frac{\partial y}{\partial \xi } \cdot \frac{\partial N_a}{\partial y} + \frac{\partial z}{\partial \xi } \cdot \frac{\partial N_a}{\partial z} \bigg )&\end{aligned}$$
(18)

Applying the product rule, Eq. (18) becomes

$$\begin{aligned}&\frac{\partial ^2 N_a}{\partial \xi \partial \eta } = \frac{\partial ^2 x}{\partial \xi \partial \eta } \cdot \frac{\partial N_a}{\partial x} + \frac{\partial x}{\partial \xi } \cdot \frac{\partial }{\partial \eta } \bigg ( \frac{\partial N_a}{\partial x} \bigg )&\nonumber \\&\quad \qquad \qquad +\,\frac{\partial ^2 y}{\partial \xi \partial \eta } \cdot \frac{\partial N_a}{\partial y} + \frac{\partial y}{\partial \xi } \cdot \frac{\partial }{\partial \eta } \bigg ( \frac{\partial N_a}{\partial y} \bigg )&\nonumber \\&\qquad \quad \qquad +\,\frac{\partial ^2 z}{\partial \xi \partial \eta } \cdot \frac{\partial N_a}{\partial z} + \frac{\partial z}{\partial \xi } \cdot \frac{\partial }{\partial \eta } \bigg ( \frac{\partial N_a}{\partial z} \bigg ) .&\end{aligned}$$
(19)

In Eq. (19), there are four new kinds of components. First, \(\frac{\partial ^2 N_a}{\partial \xi \partial \eta }\) which is the local derivative and is known. The second type includes the elements like \(\frac{\partial ^2 x}{\partial \xi \partial \eta }\) which can be calculated using the same procedure as the Jacobian matrix (only this time with second order derivatives). Components like \(\frac{\partial N_a}{\partial x}\) represent the global first derivatives. Finally there are \(\frac{\partial }{\partial \eta } \bigg (\frac{\partial N_a}{\partial x}\bigg )\) kind of components, which need special treatment. Using the chain rule yields

$$\begin{aligned}&\frac{\partial }{\partial \eta } \bigg (\frac{\partial N_a}{\partial x}\bigg )= \frac{\partial x}{\partial \eta } \cdot \frac{\partial ^2 N_a}{\partial x^2} + \frac{\partial y}{\partial \eta } \cdot \frac{\partial ^2 N_a}{\partial y^2} + \frac{\partial z}{\partial \eta } \cdot \frac{\partial ^2 N_a}{\partial z^2} .&\end{aligned}$$
(20)

Doing the same procedure for all the similar elements and replacing them in Eq. (19), after re-ordering, Eq. (19) becomes

$$\begin{aligned}&\frac{\partial ^2 N_a}{\partial \xi \partial \eta } = \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial x}{\partial \eta } \bigg ) \frac{\partial ^2 N_a}{\partial x^2} + \bigg ( \frac{\partial y}{\partial \xi } \cdot \frac{\partial y}{\partial \eta } \bigg ) \frac{\partial ^2 N_a}{\partial y^2}&\nonumber \\&\quad + \bigg ( \frac{\partial z}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } \bigg ) \frac{\partial ^2 N_a}{\partial z^2} + \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial y}{\partial \eta } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial y}{\partial \xi } \bigg ) \frac{\partial ^2 N_a}{\partial x \partial y}&\nonumber \\&\quad + \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial z}{\partial \xi } \bigg ) \frac{\partial ^2 N_a}{\partial x \partial z}&\nonumber \\&\quad + \bigg ( \frac{\partial y}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial y}{\partial \eta } \cdot \frac{\partial z}{\partial \xi } \bigg ) \frac{\partial ^2 N_a}{\partial y \partial z}&\nonumber \\&\quad + \bigg ( \frac{\partial ^2 x}{\partial \xi \partial \eta } \bigg ) \frac{\partial N_a}{\partial x } + \bigg ( \frac{\partial ^2 y}{\partial \xi \partial \eta } \bigg ) \frac{\partial N_a}{\partial y } + \bigg ( \frac{\partial ^2 z}{\partial \xi \partial \eta } \bigg ) \frac{\partial N_a}{\partial z }.&\end{aligned}$$
(21)

The same applies for other second-derivatives. Now, to calculate the unknowns, the following system of equations must be solved (see Eq. (22)).

$$\begin{aligned}&\underbrace{ \begin{Bmatrix} \frac{\partial ^2 N_a}{\partial \xi ^2} \\ \frac{\partial ^2 N_a}{\partial \eta ^2}\\ \frac{\partial ^2 N_a}{\partial \zeta ^2} \\ \frac{\partial ^2 N_a}{\partial \xi \partial \eta }\\ \frac{\partial ^2 N_a}{\partial \xi \partial \zeta }\\ \frac{\partial ^2 N_a}{\partial \eta \partial \zeta } \end{Bmatrix} }_{\text {known}} = \underbrace{ \begin{bmatrix} \left( \frac{\partial x}{\partial \xi } \right) ^2&\left( \frac{\partial y}{\partial \xi } \right) ^2&\left( \frac{\partial z}{\partial \xi } \right) ^2&2 \ \frac{\partial x}{\partial \xi } \ \frac{\partial y}{\partial \xi }&2 \ \frac{\partial x}{\partial \xi } \ \frac{\partial z}{\partial \xi }&2 \ \frac{\partial y}{\partial \xi } \ \frac{\partial z}{\partial \xi } \\ \left( \frac{\partial x}{\partial \eta } \right) ^2&\left( \frac{\partial y}{\partial \eta } \right) ^2&\left( \frac{\partial z}{\partial \eta } \right) ^2&2 \ \frac{\partial x}{\partial \eta } \ \frac{\partial y}{\partial \eta }&2 \ \frac{\partial x}{\partial \eta } \ \frac{\partial z}{\partial \eta }&2 \ \frac{\partial y}{\partial \eta } \ \frac{\partial z}{\partial \eta } \\ \left( \frac{\partial x}{\partial \zeta } \right) ^2&\left( \frac{\partial y}{\partial \zeta } \right) ^2&\left( \frac{\partial z}{\partial \zeta } \right) ^2&2 \ \frac{\partial x}{\partial \zeta } \ \frac{\partial y}{\partial \zeta }&2 \ \frac{\partial x}{\partial \zeta } \ \frac{\partial z}{\partial \zeta }&2 \ \frac{\partial y}{\partial \zeta } \ \frac{\partial z}{\partial \zeta } \\ \frac{\partial x}{\partial \xi } \frac{\partial x}{\partial \eta }&\frac{\partial y}{\partial \xi } \frac{\partial y}{\partial \eta }&\frac{\partial z}{\partial \xi } \frac{\partial z}{\partial \eta }&\left( \frac{\partial x}{\partial \xi } \frac{\partial y}{\partial \eta } + \frac{\partial x}{\partial \eta } \frac{\partial y}{\partial \xi } \right)&\left( \frac{\partial x}{\partial \xi } \frac{\partial z}{\partial \eta } + \frac{\partial x}{\partial \eta } \frac{\partial z}{\partial \xi } \right)&\left( \frac{\partial y}{\partial \xi } \frac{\partial z}{\partial \eta } + \frac{\partial y}{\partial \eta } \frac{\partial z}{\partial \xi } \right) \\ \frac{\partial x}{\partial \xi } \frac{\partial x}{\partial \zeta }&\frac{\partial y}{\partial \xi } \frac{\partial y}{\partial \zeta }&\frac{\partial z}{\partial \xi } \frac{\partial z}{\partial \zeta }&\left( \frac{\partial x}{\partial \xi } \frac{\partial y}{\partial \zeta } + \frac{\partial x}{\partial \zeta } \frac{\partial y}{\partial \xi } \right)&\left( \frac{\partial x}{\partial \xi } \frac{\partial z}{\partial \zeta } + \frac{\partial x}{\partial \zeta } \frac{\partial z}{\partial \xi } \right)&\left( \frac{\partial y}{\partial \xi } \frac{\partial z}{\partial \zeta } + \frac{\partial y}{\partial \zeta } \frac{\partial z}{\partial \xi } \right) \\ \frac{\partial x}{\partial \eta } \frac{\partial x}{\partial \zeta }&\frac{\partial y}{\partial \eta } \frac{\partial y}{\partial \zeta }&\frac{\partial z}{\partial \eta } \frac{\partial z}{\partial \zeta }&\left( \frac{\partial x}{\partial \eta } \frac{\partial y}{\partial \zeta } + \frac{\partial x}{\partial \zeta } \frac{\partial y}{\partial \eta } \right)&\left( \frac{\partial x}{\partial \eta } \frac{\partial z}{\partial \zeta } + \frac{\partial x}{\partial \zeta } \frac{\partial z}{\partial \eta } \right)&\left( \frac{\partial y}{\partial \eta } \frac{\partial z}{\partial \zeta } + \frac{\partial y}{\partial \zeta } \frac{\partial z}{\partial \eta } \right) \end{bmatrix} }_{\text {known}} \cdot \underbrace{ \begin{Bmatrix} \frac{\partial ^2 N_a}{\partial x^2} \\ \frac{\partial ^2 N_a}{\partial y^2} \\ \frac{\partial ^2 N_a}{\partial z^2} \\ \frac{\partial ^2 N_a}{\partial x \partial y}\\ \frac{\partial ^2 N_a}{\partial x \partial z}\\ \frac{\partial ^2 N_a}{\partial y \partial z} \end{Bmatrix} }_{\text {unknown}}&\nonumber \\&\qquad \qquad \qquad + \underbrace{ \begin{bmatrix} \frac{\partial ^2 x}{\partial \xi ^2}&\frac{\partial ^2 y}{\partial \xi ^2}&\frac{\partial ^2 z}{\partial \xi ^2} \\ \frac{\partial ^2 x}{\partial \eta ^2}&\frac{\partial ^2 y}{\partial \eta ^2}&\frac{\partial ^2 z}{\partial \eta ^2} \\ \frac{\partial ^2 x}{\partial \zeta ^2}&\frac{\partial ^2 y}{\partial \zeta ^2}&\frac{\partial ^2 z}{\partial \zeta ^2} \\ \frac{\partial ^2 x}{\partial \xi \partial \eta }&\frac{\partial ^2 y}{\partial \xi \partial \eta }&\frac{\partial ^2 z}{\partial \xi \partial \eta } \\ \frac{\partial ^2 x}{\partial \xi \partial \zeta }&\frac{\partial ^2 y}{\partial \xi \partial \zeta }&\frac{\partial ^2 z}{\partial \xi \partial \zeta } \\ \frac{\partial ^2 x}{\partial \eta \partial \zeta }&\frac{\partial ^2 y}{\partial \eta \partial \zeta }&\frac{\partial ^2 z}{\partial \eta \partial \zeta } \end{bmatrix} }_{\text {known}} \cdot \underbrace{ \begin{Bmatrix} \frac{\partial N_a}{\partial x} \\ \frac{\partial N_a}{\partial y} \\ \frac{\partial N_a}{\partial z} \end{Bmatrix} }_{\text {known from Eq. (17)}}&\end{aligned}$$
(22)

Moving the second part of Eq. (22) RHS to left,

$$\begin{aligned}&\begin{Bmatrix} \frac{\partial ^2 \bar{N}_a}{\partial \xi ^2} \\ \frac{\partial ^2 \bar{N}_a}{\partial \eta ^2} \\ \frac{\partial ^2 \bar{N}_a}{\partial \zeta ^2} \\ \frac{\partial ^2 \bar{N}_a}{\partial \xi \partial \eta }\\ \frac{\partial ^2 \bar{N}_a}{\partial \xi \partial \zeta }\\ \frac{\partial ^2 \bar{N}_a}{\partial \eta \partial \zeta } \end{Bmatrix} = \begin{Bmatrix} \frac{\partial ^2 N_a}{\partial \xi ^2} \\ \frac{\partial ^2 N_a}{\partial \eta ^2} \\ \frac{\partial ^2 N_a}{\partial \zeta ^2} \\ \frac{\partial ^2 N_a}{\partial \xi \partial \eta }\\ \frac{\partial ^2 N_a}{\partial \xi \partial \zeta }\\ \frac{\partial ^2 N_a}{\partial \eta \partial \zeta } \end{Bmatrix} - \begin{bmatrix} \frac{\partial ^2 x}{\partial \xi ^2}&\frac{\partial ^2 y}{\partial \xi ^2}&\frac{\partial ^2 z}{\partial \xi ^2} \\ \frac{\partial ^2 x}{\partial \eta ^2}&\frac{\partial ^2 y}{\partial \eta ^2}&\frac{\partial ^2 z}{\partial \eta ^2} \\ \frac{\partial ^2 x}{\partial \zeta ^2}&\frac{\partial ^2 y}{\partial \zeta ^2}&\frac{\partial ^2 z}{\partial \zeta ^2} \\ \frac{\partial ^2 x}{\partial \xi \partial \eta }&\frac{\partial ^2 y}{\partial \xi \partial \eta }&\frac{\partial ^2 z}{\partial \xi \partial \eta } \\ \frac{\partial ^2 x}{\partial \xi \partial \zeta }&\frac{\partial ^2 y}{\partial \xi \partial \zeta }&\frac{\partial ^2 z}{\partial \xi \partial \zeta } \\ \frac{\partial ^2 x}{\partial \eta \partial \zeta }&\frac{\partial ^2 y}{\partial \eta \partial \zeta }&\frac{\partial ^2 z}{\partial \eta \partial \zeta } \end{bmatrix} \begin{Bmatrix} \frac{\partial N_a}{\partial x} \\ \frac{\partial N_a}{\partial y} \\ \frac{\partial N_a}{\partial z} \end{Bmatrix} .&\end{aligned}$$
(23)

Finally, the global derivatives can be calculated using Eq. (24).

$$\begin{aligned}&\begin{Bmatrix} \frac{\partial ^2 N_a}{\partial x^2} \\ \frac{\partial ^2 N_a}{\partial y^2} \\ \frac{\partial ^2 N_a}{\partial z^2} \\ \frac{\partial ^2 N_a}{\partial x \partial y}\\ \frac{\partial ^2 N_a}{\partial x \partial z}\\ \frac{\partial ^2 N_a}{\partial y \partial z} \end{Bmatrix} = \begin{bmatrix} \left( \frac{\partial x}{\partial \xi } \right) ^2&\left( \frac{\partial y}{\partial \xi } \right) ^2&\left( \frac{\partial z}{\partial \xi } \right) ^2&2 \ \frac{\partial x}{\partial \xi } \ \frac{\partial y}{\partial \xi }&2 \ \frac{\partial x}{\partial \xi } \ \frac{\partial z}{\partial \xi }&2 \ \frac{\partial y}{\partial \xi } \ \frac{\partial z}{\partial \xi } \\ \left( \frac{\partial x}{\partial \eta } \right) ^2&\left( \frac{\partial y}{\partial \eta } \right) ^2&\left( \frac{\partial z}{\partial \eta } \right) ^2&2 \ \frac{\partial x}{\partial \eta } \ \frac{\partial y}{\partial \eta }&2 \ \frac{\partial x}{\partial \eta } \ \frac{\partial z}{\partial \eta }&2 \ \frac{\partial y}{\partial \eta } \ \frac{\partial z}{\partial \eta } \\ \left( \frac{\partial x}{\partial \zeta } \right) ^2&\left( \frac{\partial y}{\partial \zeta } \right) ^2&\left( \frac{\partial z}{\partial \zeta } \right) ^2&2 \ \frac{\partial x}{\partial \zeta } \ \frac{\partial y}{\partial \zeta }&2 \ \frac{\partial x}{\partial \zeta } \ \frac{\partial z}{\partial \zeta }&2 \ \frac{\partial y}{\partial \zeta } \ \frac{\partial z}{\partial \zeta } \\ \frac{\partial x}{\partial \xi } \frac{\partial x}{\partial \eta }&\frac{\partial y}{\partial \xi } \frac{\partial y}{\partial \eta }&\frac{\partial z}{\partial \xi } \frac{\partial z}{\partial \eta }&\left( \frac{\partial x}{\partial \xi } \frac{\partial y}{\partial \eta } + \frac{\partial x}{\partial \eta } \frac{\partial y}{\partial \xi } \right)&\left( \frac{\partial x}{\partial \xi } \frac{\partial z}{\partial \eta } + \frac{\partial x}{\partial \eta } \frac{\partial z}{\partial \xi } \right)&\left( \frac{\partial y}{\partial \xi } \frac{\partial z}{\partial \eta } + \frac{\partial y}{\partial \eta } \frac{\partial z}{\partial \xi } \right) \\ \frac{\partial x}{\partial \xi } \frac{\partial x}{\partial \zeta }&\frac{\partial y}{\partial \xi } \frac{\partial y}{\partial \zeta }&\frac{\partial z}{\partial \xi } \frac{\partial z}{\partial \zeta }&\left( \frac{\partial x}{\partial \xi } \frac{\partial y}{\partial \zeta } + \frac{\partial x}{\partial \zeta } \frac{\partial y}{\partial \xi } \right)&\left( \frac{\partial x}{\partial \xi } \frac{\partial z}{\partial \zeta } + \frac{\partial x}{\partial \zeta } \frac{\partial z}{\partial \xi } \right)&\left( \frac{\partial y}{\partial \xi } \frac{\partial z}{\partial \zeta } + \frac{\partial y}{\partial \zeta } \frac{\partial z}{\partial \xi } \right) \\ \frac{\partial x}{\partial \eta } \frac{\partial x}{\partial \zeta }&\frac{\partial y}{\partial \eta } \frac{\partial y}{\partial \zeta }&\frac{\partial z}{\partial \eta } \frac{\partial z}{\partial \zeta }&\left( \frac{\partial x}{\partial \eta } \frac{\partial y}{\partial \zeta } + \frac{\partial x}{\partial \zeta } \frac{\partial y}{\partial \eta } \right)&\left( \frac{\partial x}{\partial \eta } \frac{\partial z}{\partial \zeta } + \frac{\partial x}{\partial \zeta } \frac{\partial z}{\partial \eta } \right)&\left( \frac{\partial y}{\partial \eta } \frac{\partial z}{\partial \zeta } + \frac{\partial y}{\partial \zeta } \frac{\partial z}{\partial \eta } \right) \end{bmatrix} ^{-1} \cdot \begin{Bmatrix} \frac{\partial ^2 \bar{N}_a}{\partial \xi ^2} \\ \frac{\partial ^2 \bar{N}_a}{\partial \eta ^2} \\ \frac{\partial ^2 \bar{N}_a}{\partial \zeta ^2} \\ \frac{\partial ^2 \bar{N}_a}{\partial \xi \partial \eta }\\ \frac{\partial ^2 \bar{N}_a}{\partial \xi \partial \zeta }\\ \frac{\partial ^2 \bar{N}_a}{\partial \eta \partial \zeta } \end{Bmatrix}.&\end{aligned}$$
(24)

The same procedure applies for the third-derivatives. Here, to avoid tremendous matrix representations, a summary of the necessary steps to derive the unknowns is presented. The Eq. (21) counterpart for the third-derivatives is

$$\begin{aligned}&\frac{\partial ^3 N_a}{\partial \xi \partial \eta \partial \zeta } = \frac{\partial x}{\partial \xi } \cdot \frac{\partial x}{\partial \eta } \cdot \frac{\partial x}{\partial \zeta } \cdot \frac{\partial ^3 N_a}{\partial x^3} + \frac{\partial y}{\partial \xi } \cdot \frac{\partial y}{\partial \eta } \cdot \frac{\partial y}{\partial \zeta } \cdot \frac{\partial ^3 N_a}{\partial y^3}&\\&\quad + \frac{\partial z}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } \cdot \frac{\partial z}{\partial \zeta } \cdot \frac{\partial ^3 N_a}{\partial z^3}&\\&\quad + \bigg [ \frac{\partial x}{\partial \xi } \cdot \frac{\partial x}{\partial \eta } \cdot \frac{\partial y}{\partial \zeta } + \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial y}{\partial \eta } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial y}{\partial \xi } \bigg ) \frac{\partial x}{\partial \zeta } \bigg ] \cdot \frac{\partial ^3 N_a}{\partial x^2 \partial y}&\\&\quad + \bigg [ \frac{\partial x}{\partial \xi } \cdot \frac{\partial x}{\partial \eta } \cdot \frac{\partial z}{\partial \zeta } + \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial z}{\partial \xi } \bigg ) \frac{\partial x}{\partial \zeta } \bigg ] \cdot \frac{\partial ^3 N_a}{\partial x^2 \partial z}&\\&\quad + \bigg [ \frac{\partial y}{\partial \xi } \cdot \frac{\partial y}{\partial \eta } \cdot \frac{\partial x}{\partial \zeta } + \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial y}{\partial \eta } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial y}{\partial \xi } \bigg ) \frac{\partial y}{\partial \zeta } \bigg ] \cdot \frac{\partial ^3 N_a}{\partial x \partial y^2}&\\&\quad + \bigg [ \frac{\partial y}{\partial \xi } \cdot \frac{\partial y}{\partial \eta } \cdot \frac{\partial z}{\partial \zeta } + \bigg ( \frac{\partial y}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial y}{\partial \eta } \cdot \frac{\partial z}{\partial \xi } \bigg ) \frac{\partial y}{\partial \zeta } \bigg ] \cdot \frac{\partial ^3 N_a}{\partial y^2 \partial z}&\\&\quad + \bigg [ \frac{\partial z}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } \cdot \frac{\partial x}{\partial \zeta } + \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial z}{\partial \xi } \bigg ) \frac{\partial z}{\partial \zeta } \bigg ] \cdot \frac{\partial ^3 N_a}{\partial x \partial z^2}&\\&\quad + \bigg [ \frac{\partial z}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } \cdot \frac{\partial y}{\partial \zeta } + \bigg ( \frac{\partial y}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial y}{\partial \eta } \cdot \frac{\partial z}{\partial \xi } \bigg ) \frac{\partial z}{\partial \zeta } \bigg ] \cdot \frac{\partial ^3 N_a}{\partial y \partial z^2}&\\&\quad + \bigg [ \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial y}{\partial \eta } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial y}{\partial \xi } \bigg ) \frac{\partial z}{\partial \zeta } + \bigg ( \frac{\partial x}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial z}{\partial \xi } \bigg ) \frac{\partial y}{\partial \zeta }&\\&\quad + \bigg ( \frac{\partial y}{\partial \xi } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial y}{\partial \eta } \cdot \frac{\partial z}{\partial \xi } \bigg ) \frac{\partial x}{\partial \zeta } \bigg ] \cdot \frac{\partial ^3 N_a}{\partial x \partial y \partial z}&\\&\quad + \bigg ( \frac{\partial ^2 x}{\partial \xi \partial \zeta } \cdot \frac{\partial x}{\partial \eta } + \frac{\partial x}{\partial \xi } \cdot \frac{\partial ^2 x}{\partial \eta \partial \zeta } + \frac{\partial ^2 x}{\partial \xi \partial \eta } \cdot \frac{\partial x}{\partial \zeta } \bigg ) \cdot \frac{\partial ^2 N_a}{\partial x^2}&\\ \end{aligned}$$
$$\begin{aligned}&\quad + \bigg ( \frac{\partial ^2 y}{\partial \xi \partial \zeta } \cdot \frac{\partial y}{\partial \eta } + \frac{\partial y}{\partial \xi } \cdot \frac{\partial ^2 y}{\partial \eta \partial \zeta } + \frac{\partial ^2 y}{\partial \xi \partial \eta } \cdot \frac{\partial y}{\partial \zeta } \bigg ) \cdot \frac{\partial ^2 N_a}{\partial y^2}&\nonumber \\&\quad + \bigg ( \frac{\partial ^2 z}{\partial \xi \partial \zeta } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial z}{\partial \xi } \cdot \frac{\partial ^2 z}{\partial \eta \partial \zeta } + \frac{\partial ^2 z}{\partial \xi \partial \eta } \cdot \frac{\partial z}{\partial \zeta } \bigg ) \cdot \frac{\partial ^2 N_a}{\partial z^2}&\nonumber \\&\quad + \bigg ( \frac{\partial ^2 x}{\partial \xi \partial \zeta } \cdot \frac{\partial y}{\partial \eta } + \frac{\partial x}{\partial \xi } \cdot \frac{\partial ^2 y}{\partial \eta \partial \zeta } + \frac{\partial ^2 x}{\partial \eta \partial \zeta } \cdot \frac{\partial y}{\partial \xi } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial ^2 y}{\partial \xi \partial \zeta }&\nonumber \\&\quad + \frac{\partial ^2 x}{\partial \xi \partial \eta } \cdot \frac{\partial y}{\partial \zeta } + \frac{\partial ^2 y}{\partial \xi \partial \eta } \cdot \frac{\partial x}{\partial \zeta } \bigg ) \cdot \frac{\partial ^2 N_a}{\partial x \partial y}&\nonumber \\&\quad + \bigg ( \frac{\partial ^2 x}{\partial \xi \partial \zeta } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial x}{\partial \xi } \cdot \frac{\partial ^2 z}{\partial \eta \partial \zeta } + \frac{\partial ^2 x}{\partial \eta \partial \zeta } \cdot \frac{\partial z}{\partial \xi } + \frac{\partial x}{\partial \eta } \cdot \frac{\partial ^2 z}{\partial \xi \partial \zeta }&\nonumber \\&\quad + \frac{\partial ^2 x}{\partial \xi \partial \eta } \cdot \frac{\partial z}{\partial \zeta } + \frac{\partial ^2 z}{\partial \xi \partial \eta } \cdot \frac{\partial x}{\partial \zeta } \bigg ) \cdot \frac{\partial ^2 N_a}{\partial x \partial z}&\nonumber \\&\quad + \bigg ( \frac{\partial ^2 y}{\partial \xi \partial \zeta } \cdot \frac{\partial z}{\partial \eta } + \frac{\partial y}{\partial \xi } \cdot \frac{\partial ^2 z}{\partial \eta \partial \zeta } + \frac{\partial ^2 y}{\partial \eta \partial \zeta } \cdot \frac{\partial z}{\partial \xi } + \frac{\partial y}{\partial \eta } \cdot \frac{\partial ^2 z}{\partial \xi \partial \zeta }&\nonumber \\&\quad + \frac{\partial ^2 y}{\partial \xi \partial \eta } \cdot \frac{\partial z}{\partial \zeta } + \frac{\partial ^2 z}{\partial \xi \partial \eta } \cdot \frac{\partial y}{\partial \zeta } \bigg ) \cdot \frac{\partial ^2 N_a}{\partial y \partial z}&\nonumber \\&\quad + \frac{\partial ^3 x}{\partial \xi \partial \eta \partial \zeta } \cdot \frac{\partial N_a}{\partial x} + \frac{\partial ^3 y}{\partial \xi \partial \eta \partial \zeta } \cdot \frac{\partial N_a}{\partial y} + \frac{\partial ^3 z}{\partial \xi \partial \eta \partial \zeta } \cdot \frac{\partial N_a}{\partial z}. \end{aligned}$$
(25)

After doing the same calculations for all the third-derivatives and re-ordering, this results to a system of equations which looks similar to Eq. (22),

$$\begin{aligned}&\mathbf {a}_{10\times 1} = \mathbf {B}_{10\times 10}\cdot \mathbf {c}_{10\times 1} \ + \ \mathbf {D}_{10\times 6}\cdot \mathbf {e}_{6\times 1} \ + \ \mathbf {F}_{10\times 3}\cdot \mathbf {g}_{3\times 1},&\end{aligned}$$
(26)

where the subscripts denote the dimensions. In Eq. (26), \(\mathbf {a}\) is the vector of local third-derivatives (known), \(\mathbf {c}\) represents the unknown vector of global third-derivatives, \(\mathbf {e}\) is the vector of global second-derivatives (known from Eq. (24)), \(\mathbf {g}\) denotes the vector of global first-derivatives (known from Eq. (17)), and \(\mathbf {B}\), \(\mathbf {D}\) and \(\mathbf {F}\) (all known) are coefficient matrices. At last, defining

$$\begin{aligned}&\mathbf {h}_{10\times 1} = \mathbf {a}_{10\times 1} \ - \ \mathbf {D}_{10\times 6}\cdot \mathbf {e}_{6\times 1} \ - \ \mathbf {F}_{10\times 3}\cdot \mathbf {g}_{3\times 1},&\end{aligned}$$
(27)

the global third-derivatives vector, \(\mathbf {c}\), can be calculated from,

$$\begin{aligned}&\mathbf {c}_{10\times 1} = \mathbf {B}^{-1}_{10\times 10}\cdot \mathbf {h}_{10\times 1} .&\end{aligned}$$
(28)

The complete matrix multiplication is provided as a supplementary file for the online-version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makvandi, R., Reiher, J.C., Bertram, A. et al. Isogeometric analysis of first and second strain gradient elasticity. Comput Mech 61, 351–363 (2018). https://doi.org/10.1007/s00466-017-1462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1462-8

Keywords

Navigation