Skip to main content
Log in

A new preconditioner update strategy for the solution of sequences of linear systems in structural mechanics: application to saddle point problems in elasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This is to be in agreement with all preconditioning strategies implemented in the host finite element software \(Code\_Aster\).

  2. \({{P}}_\mathcal{{V}, \mathcal {W}}\) is the unique projection operator with range \(\mathcal {R}({{P}}_\mathcal{{V}, \mathcal {W}}) = \mathcal {V}\) and null space \(\mathcal {N}({{P}}_\mathcal{{V}, \mathcal {W}}) = \mathcal {W}\) [39].

  3. We indeed use the property \( span\{s, \bar{s}\} = span\{{\text {Re}}(s), {\text {Im}}(s)\}\) to justify the fact that the entries of S can be chosen as real-valued, as stated in Definition 1; see Sect. 5.3 for a detailed discussion.

  4. We emphasize that this situation did not occur in all our numerical experiments.

  5. http://www.code-aster.org.

  6. http://www.mcs.anl.gov/petsc/.

  7. The CPU time for the Ritz-LMP strategy does include the cost of forming XY as required in (20).

  8. This estimate has been obtained as a by-product of the application of MUMPS (here in double-precision arithmetic) to the first matrix \({\mathcal {K}}_1\) in the sequence.

References

  1. Amestoy PR, Duff IS, L’Excellent J-Y (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184:501–520

    Article  MATH  Google Scholar 

  2. Amestoy PR, Duff IS, L’Excellent J-Y, Koster J (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41

    Article  MATH  MathSciNet  Google Scholar 

  3. Amestoy PR, Guermouche A, L’Excellent JY, Pralet S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput 32(2):136–156

    Article  MathSciNet  Google Scholar 

  4. Baglama J, Calvetti D, Golub G, Reichel L (1998) Adaptively preconditioned GMRES algorithms. SIAM J Sci Comput 20:243–269

    Article  MATH  MathSciNet  Google Scholar 

  5. Bai Z, Demmel J, Dongarra J, Ruhe A, van der Vorst HA (2000) Templates for the solution of algebraic eigenvalue problems: a practical guide, vol 11. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  6. Bargellini R (2011) Elasto-visco-plastic modeling with isotropic hardening in large deformations. Technical Report, EDF R&D, AMA R5.03.21

  7. Bellavia S, Bertaccini D, Morini B (2011) Nonsymmetric preconditioner updates in Newton–Krylov methods for nonlinear systems. SIAM J Sci Comput 33(5):2595–2619

    Article  MATH  MathSciNet  Google Scholar 

  8. Bellavia S, Morini B, Porcelli M (2014) New updates of incomplete LU factorizations and applications to large nonlinear systems. Optim Methods Softw 29:321–340

    Article  MATH  MathSciNet  Google Scholar 

  9. Benzi M (2002) Preconditioning techniques for large linear systems: a survey. J Comput Phys 182(2):418–477

    Article  MATH  MathSciNet  Google Scholar 

  10. Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14(1):1–137

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. Broyden CG (1969) A new method of solving nonlinear simultaneous equations. Comput J 12(1):94–99

    Article  MATH  MathSciNet  Google Scholar 

  13. Carpentieri B, Duff IS, Giraud L (2003) A class of spectral two-level preconditioners. SIAM J Sci Comput 25(2):749–765

    Article  MATH  MathSciNet  Google Scholar 

  14. Chapman A, Saad Y (1997) Deflated and augmented Krylov subspace techniques. Numer Linear Algebra Appl 4(1):43–66

    Article  MATH  MathSciNet  Google Scholar 

  15. Dostál Z (1988) Conjugate gradient method with preconditioning by projector. Int J Comput Math 23(3):315–323

    Article  MATH  Google Scholar 

  16. Duintjer Tebbens J, Tuma M (2007) Efficient preconditioning of sequences of nonsymmetric linear systems. SIAM J Sci Comput 29(5):1918–1941

    Article  MATH  MathSciNet  Google Scholar 

  17. Duintjer Tebbens J, Tuma M (2010) Preconditioner updates for solving sequences of linear systems in matrix-free environment. Numer Linear Algebra Appl 17:997–1019

    Article  MATH  MathSciNet  Google Scholar 

  18. Eirola T, Nevanlinna O (1989) Accelerating with rank-one updates. Linear Algebra Appl 121:511–520

    Article  MATH  MathSciNet  Google Scholar 

  19. Elman HC, Silvester DJ, Wathen AJ (2014) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics, 2nd edn. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  20. Erlangga Y, Nabben R (2008) Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices. SIAM J Matrix Anal Appl 30(2):684–699

    Article  MATH  MathSciNet  Google Scholar 

  21. Gaul A (2014) Recycling Krylov subspace methods for sequences of linear systems : analysis and applications. Ph.D. thesis, TU Berlin, Germany

  22. Gaul A, Gutknecht MH, Liesen J, Nabben R (2013) A framework for deflated and augmented Krylov subspace methods. SIAM J Matrix Anal Appl 34(2):495–518

    Article  MATH  MathSciNet  Google Scholar 

  23. Gaul A, Schlömer N (2015) Preconditioned recycling Krylov subspace methods for self-adjoint problems. Electron Trans Numer Anal 44:522–547

    MATH  MathSciNet  Google Scholar 

  24. Giraud L, Gratton S, Martin E (2007) Incremental spectral preconditioners for sequences of linear systems. Appl Numer Math 57:1164–1180

    Article  MATH  MathSciNet  Google Scholar 

  25. Golub GH, Greif C (2003) On solving block-structured indefinite linear systems. SIAM J Sci Comput 24(6):2076–2092

    Article  MATH  MathSciNet  Google Scholar 

  26. Gosselet P, Rey C, Pebrel J (2013) Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems. Int J Numer Methods Eng 94(1):60–83

    Article  MATH  MathSciNet  Google Scholar 

  27. Gratton S, Mercier S, Tardieu N, Vasseur X (2016) Limited memory preconditioners for symmetric indefinite problems with application to structural mechanics. Numer Linear Algebra Appl 23(5):865–887

    Article  MATH  MathSciNet  Google Scholar 

  28. Gratton S, Sartenaer A, Tshimanga J (2011) On a class of limited memory preconditioners for large scale linear systems with multiple right-hand sides. SIAM J Opt 21(3):912–935

    Article  MATH  MathSciNet  Google Scholar 

  29. Gutknecht MH (2012) Spectral deflation in Krylov solvers: a theory of coordinate space based methods. Electron Trans Numer Anal 39:156–185

    MATH  MathSciNet  Google Scholar 

  30. Gutknecht MH (2014) Deflated and augmented Krylov subspace methods: a framework for deflated BiCG and related solvers. SIAM J Matrix Anal Appl 35:1444–1466

    Article  MATH  MathSciNet  Google Scholar 

  31. Ipsen ICF (2001) A note on preconditioning nonsymmetric matrices. SIAM J Sci Comput 23(3):10501–1051

    Article  MathSciNet  Google Scholar 

  32. Jönsthövel TB, Van Gijzen MB, MacLachlan S, Vuik C, Scarpas A (2012) Comparison of the deflated conjugate gradient method and algebraic multigrid for composite materials. Comput Mech 50:321–333

    Article  MATH  MathSciNet  Google Scholar 

  33. Jönsthövel TB, Van Gijzen MB, Vuik C, Scarpas A (2013) On the use of rigid body modes in the deflated preconditioned conjugate gradient method. SIAM J Sci Comput 35:B207–B225

    Article  MATH  MathSciNet  Google Scholar 

  34. Kelley CT (2003) Solving nonlinear equations with Newton’s method, vol 1. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  35. Kharchenko S, Yeremin A (1995) Eigenvalue translation based preconditioners for the GMRES(k) method. Numer Linear Algebra Appl 2:51–77

    Article  MATH  MathSciNet  Google Scholar 

  36. Kilmer M, de Sturler E (2006) Recycling subspace information for diffuse optical tomography. SIAM J Sci Comput 27(6):2140–2166

    Article  MATH  MathSciNet  Google Scholar 

  37. Liesen J, Strakoš Z (2013) Krylov subspace methods principles and analysis. Oxford University Press, Oxford

    MATH  Google Scholar 

  38. Mercier S (2015) Fast nonlinear solvers in solid mechanics. Ph.D. thesis, University of Toulouse, Toulouse, France, http://thesesups.ups-tlse.fr/3000/1/2015TOU30305.pdf

  39. Meyer CD (2000) Matrix analysis and applied linear algebra. SIAM, Philadelphia

    Book  Google Scholar 

  40. Michel-Ponnelle S (2013) Modeling of the pretension cables. Technical report, EDF R&D, AMA R7.01.02

  41. Morales JL, Nocedal J (2000) Automatic preconditioning by limited memory quasi-Newton updating. SIAM J Opt 10(4):1079–1096

    Article  MATH  MathSciNet  Google Scholar 

  42. Nash S (1984) Newton-type minimization via the Lanczos method. SIAM J Numer Anal 21:770–778

    Article  MATH  MathSciNet  Google Scholar 

  43. Nečas J, Hlavácek I (1980) Mathematical theory of elastic and elastoplastic bodies. Elsevier, Amsterdam

    MATH  Google Scholar 

  44. Nicolaides RA (1987) Deflation of conjugate gradients with applications to boundary value problems. SIAM J Numer Anal 24(2):355–365

    Article  MATH  MathSciNet  Google Scholar 

  45. Nocedal J, Wright SJ (1999) Numerical optimization. Springer series in operations research and financial engineering. Springer, Berlin

    Google Scholar 

  46. Notay Y (2014) A new analysis of block preconditioners for saddle point problems. SIAM J Matrix Anal Appl 35(1):143–173

    Article  MATH  MathSciNet  Google Scholar 

  47. O’Leary DP, Yeremin A (1994) The linear algebra of block quasi-Newton algorithms. Linear Algebra Appl 212(213):153–168

    Article  MATH  MathSciNet  Google Scholar 

  48. Olshanskii MA, Tyrtyshnikov EE (2014) Iterative methods for linear systems: theory and applications. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  49. Paige CC, Parlett BN, van der Vorst HA (1995) Approximate solutions and eigenvalue bounds from Krylov subspaces. Numer Linear Algebra Appl 2:115–134

    Article  MATH  MathSciNet  Google Scholar 

  50. Parks M, de Sturler E, Mackey G, Johnson D, Maiti S (2006) Recycling Krylov subspaces for sequences of linear systems. SIAM J Sci Comput 28(5):1651–1674

    Article  MATH  MathSciNet  Google Scholar 

  51. Pestana J, Wathen AJ (2015) Natural preconditioning and iterative methods for saddle point systems. SIAM Rev 57(1):71–91

    Article  MATH  MathSciNet  Google Scholar 

  52. Proix JM (2013) Elasto-visco-plastic modeling of Chaboche-type. Technical Report, EDF R&D, AMA R5.03.04

  53. Rey C, Risler F (1998) A Rayleigh–Ritz preconditioner for the iterative solution to large scale nonlinear problems. Numer Algorithms 17:279–311

    Article  MATH  MathSciNet  Google Scholar 

  54. Risler F, Rey C (1998) On the reuse of Ritz vectors for the solution to nonlinear elasticity problems by domain decomposition methods. Contemp Math 218:334–340

    Article  MATH  MathSciNet  Google Scholar 

  55. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  56. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869

    Article  MATH  MathSciNet  Google Scholar 

  57. Saad Y, Yeung M, Erhel J, Guyomarc’h F (2000) A deflated version of the conjugate gradient algorithm. SIAM J Sci Comput 21(5):1909–1926

    Article  MATH  MathSciNet  Google Scholar 

  58. Schnabel RB (1983) Quasi-Newton methods using multiple secant equations. Technical report, Technical report CU-CS-247-83, Department of Computer Sciences, University of Colorado, Boulder, CO

  59. Shewchuk J (2002) What is a good linear finite element ? Interpolation, conditioning, anisotropy, and quality measures, University of California at Berkeley, unpublished preprint

  60. Simoncini V, Szyld DB (2007) Recent computational developments in Krylov subspace methods for linear systems. Numer Linear Algebra Appl 14(1):1–59

    Article  MATH  MathSciNet  Google Scholar 

  61. Soodhalter KM, Szyld DB, Xue F (2014) Krylov subspace recycling for sequences of shifted linear systems. Appl Numer Math 81:105–118

    Article  MATH  MathSciNet  Google Scholar 

  62. Tang JM, MacLachlan SP, Nabben R, Vuik C (2010) A comparison of two-level preconditioners based on multigrid and deflation. SIAM J Matrix Anal Appl 31(4):1715–1739

    Article  MATH  MathSciNet  Google Scholar 

  63. Tardieu N, Cheignon E (2012) A Newton–Krylov method for solid mechanics. Eur J Comput Mech 21(3–6):374–384

    MATH  Google Scholar 

  64. Toselli A, Widlund O (2005) Domain decomposition methods: algorithms and theory. Springer, Berlin

    Book  MATH  Google Scholar 

  65. van der Vorst HA (2003) Iterative Krylov methods for large linear systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  66. Vassilevski PS (2008) Multilevel block factorization preconditioners: matrix-based analysis and algorithms for solving finite element equations. Springer, New-York

    MATH  Google Scholar 

  67. Wang S, de Sturler E, Paulino G (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441–2468

    Article  MATH  MathSciNet  Google Scholar 

  68. Wathen AJ (2015) Preconditioning. Acta Numer 24:329–376

    Article  MATH  MathSciNet  Google Scholar 

  69. Yang UM (1995) A family of preconditioned iterative solvers for sparse linear systems. Ph.D. thesis, University of Illinois at Urbana-Champaign

  70. Yang UM, Gallivan KA (1995) A new family of preconditioned iterative solvers for nonsymmetric linear systems. Appl Num Math 19(3):287–317

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the two anonymous reviewers for their comments. The authors are indebted to Jed Brown and Barry Smith (PETSc Team) and Thomas de Soza (EDF) for their comments and suggestions related to the implementation of the limited memory preconditioners into PETSc and \(Code\_Aster\). The authors would like to acknowledge ANRT (Association Nationale de la Recherche et de la Technologie) for the CIFRE Grant dotation (2012/0687) supporting Sylvain Mercier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Vasseur.

Appendix

Appendix

We give in this section the two theorems cited in Sect. 4.1.

Theorem 1

Let \(A \in \mathbb {R}^{N \times N}\) be a nonsingular matrix and assume that \(S \in \mathbb {R}^{N \times k}\) is of full column rank k, with \(k \le N\) and denote \({\mathscr {S}}={\mathcal {R}}(S)\). The preconditioner H given in Definition 1 is nonsingular if and only if

$$\begin{aligned} \mathbb {R}^{N} = (A {\mathscr {S}})^{\perp } \oplus {\mathscr {S}}. \end{aligned}$$
(22)

Proof

Using relation (7), the preconditioner given in Definition 1 can be written as

$$\begin{aligned} H = P_{(A{\mathscr {S}})^{\perp }} + S(S^TA^TAS)^{-1}S^TA^T. \end{aligned}$$
(23)

Hence, the preconditioned operator HA simply reads

$$\begin{aligned} HA = P_{(A{\mathscr {S}})^{\perp }}A + I_N-Q. \end{aligned}$$
(24)

Since \(\mathcal{{R}}(P_{(A{\mathscr {S}})^{\perp }}A) = (A {\mathscr {S}})^{\perp }\), \(\mathcal{{N}}(P_{(A{\mathscr {S}})^{\perp }}A) = {\mathscr {S}}\), \(\mathcal{{N}}(I_N-Q) = (A^T A {\mathscr {S}})^{\perp }\) and \(\mathcal{{R}}(I_N-Q) = {\mathscr {S}}\), necessary and sufficient conditions for HA to be invertible are given by

$$\begin{aligned} \mathbb {R}^{N} = (A {\mathscr {S}})^{\perp } \oplus {\mathscr {S}} \; \text{ and } \; \mathbb {R}^{N} = (A^T A {\mathscr {S}})^{\perp } \oplus {\mathscr {S}}. \end{aligned}$$

We note that the condition \(\mathbb {R}^{N} = (A^T A {\mathscr {S}})^{\perp } \oplus {\mathscr {S}}\) holds since \(A^TA\) is symmetric positive definite. This completes the proof, since A is supposed to be nonsingular. \(\square \)

Theorem 2

Let \(A \in \mathbb {R}^{N \times N}\) be a nonsingular matrix and H be given by (15) in Definition 1. Assume that the columns of \(W \in \mathbb {R}^{N \times k}\) and \(W_{\perp } \in \mathbb {R}^{N \times (N-k)}\) form an orthonormal basis for \(A{\mathscr {S}}\) and \((A{\mathscr {S}})^{\perp }\), respectively. The spectrum of the preconditioned operator AH is then given by

$$\begin{aligned} \varLambda (AH)=\{1\} \cup \varLambda (W_{\perp }^TAW_{\perp }). \end{aligned}$$

Proof

Using relations (7) and (23) leads to

$$\begin{aligned} AH=AP_{(A{\mathscr {S}})^{\perp }} + I_N-P_{(A{\mathscr {S}})^{\perp }}. \end{aligned}$$
(25)

Since the columns of \([W, W_{\perp }]\) form an orthonormal basis of \(\mathbb {R}^{N}\), we have

\(\varLambda (AH)=\varLambda ([W,W_{\perp }]^TAH[W,W_{\perp }])\) and

$$\begin{aligned}{}[W, W_{\perp }]^TAH[W,W_{\perp }] = \begin{pmatrix} W^T AH W &{} W^TAHW_{\perp } \\ W_{\perp }^TAHW &{} W_{\perp }^TAHW_{\perp } \end{pmatrix}. \end{aligned}$$

Using relation (25) and basic properties of the orthogonal projection \(P_{(A{\mathscr {S}})^{\perp }}\), we finally obtain

$$\begin{aligned}{}[W, W_{\perp }]^TAH[W, W_{\perp }]=\begin{pmatrix} I_k &{} W^TAW_{\perp } \\ 0_{N-k,k} &{} W_{\perp }^TAW_{\perp } \end{pmatrix}, \end{aligned}$$

which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercier, S., Gratton, S., Tardieu, N. et al. A new preconditioner update strategy for the solution of sequences of linear systems in structural mechanics: application to saddle point problems in elasticity. Comput Mech 60, 969–982 (2017). https://doi.org/10.1007/s00466-017-1450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1450-z

Keywords

Navigation