Skip to main content
Log in

A non-invasive implementation of a mixed domain decomposition method for frictional contact problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A non-invasive implementation of the Latin domain decomposition method for frictional contact problems is described. The formulation implies to deal with mixed (Robin) conditions on the faces of the subdomains, which is not a classical feature of commercial software. Therefore we propose a new implementation of the linear stage of the Latin method with a non-local search direction built as the stiffness of a layer of elements on the interfaces. This choice enables us to implement the method within the open source software Code_Aster, and to derive 2D and 3D examples with similar performance as the standard Latin method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375

    Article  MATH  MathSciNet  Google Scholar 

  2. Belgacem F, Hild P, Laborde P (1998) Recent advances in contact mechanics the mortar finite element method for contact problems. Math Comput Model 28(4):263–271

    Article  MATH  Google Scholar 

  3. Belgacem FB, Maday Y (1997) The mortar element method for three dimensional finite elements. ESAIM Math Model Numer Anal 31(2):289–302

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai XC, Sarkis M (1999) A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J Sci Comput 21(2):792–797

    Article  MATH  MathSciNet  Google Scholar 

  5. Cai XC, Farhat C, Sarkis M (1998) A minimum overlap restricted additive Schwarz preconditioner and applications to 3D flow simulations. Contemp Math 218:479–485

    Article  MATH  Google Scholar 

  6. Champaney L, Boucard P (2003) Multiresolution strategy for the parametric study of assemblies including contact with friction. In: 7th international conference on computational plasticity (COMPLAS), Barcelone, Espagne, cf. p. 41

  7. Christensen P, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42(1):145–173

    Article  MATH  MathSciNet  Google Scholar 

  8. Christensen PW (2002) A semi-smooth newton method for elasto-plastic contact problems. Int J Solids Struct 39(8):2323–2341

    Article  MATH  Google Scholar 

  9. Desmeure G, Rey C, Gosselet P, Cresta P (2012) On the representation of interface traction field in a mixed domain decomposition method for structural assemblies. In: WCCM—10th world congress on computational mechanics, Sao Paolo

  10. Dohrmann C (2003) A preconditioner for substructuring based on constrained energy minimization. SIAM J Sci Comput 25(1):246–258

    Article  MATH  MathSciNet  Google Scholar 

  11. Dostál Z, Horák D (2004) Scalable FETI with optimal dual penalty for a variational inequality. Numer Linear Algebra Appl 11(56):455–472

    Article  MATH  MathSciNet  Google Scholar 

  12. Dostál Z, Horák D, Kučera R, Vondrák V, Haslinger J, Dobiáš J, Pták S (2005) FETI based algorithms for contact problems: scalability, large displacements and 3D Coulomb friction. Comput Methods Appl Mech Eng 194(2–5):395–409

    Article  MATH  MathSciNet  Google Scholar 

  13. Dostál Z, Kozubek T, Vondr V, Brzobohaty T, Markopoulos A (2010) Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int J Numer Methods Eng 82(11):1384–1405. doi:10.1002/nme.2807

    MATH  MathSciNet  Google Scholar 

  14. Dostál Z, Kozubek T, Brzobohaty T, Markopoulos A, Vlach O (2012) Scalable TFETI with optional preconditioning by conjugate projector for transient frictionless contact problems of elasticity. Comput Methods Appl Mech Eng 247–248:37–50

    Article  MATH  MathSciNet  Google Scholar 

  15. Farhat C, Mandel J (1998) The two-level FETI method for static and dynamic plate problems Part I: an optimal iterative solver for biharmonic systems. Comput Methods Appl Mech Eng 155(1–2):129–151

    Article  MATH  Google Scholar 

  16. Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227

    Article  MATH  MathSciNet  Google Scholar 

  17. Farhat C, Mandel J, Roux F (1994) Optimal convergence properties of the FETI domain decomposition method. Comput Methods Appl Mech Eng 115(3–4):365–385

    Article  MathSciNet  Google Scholar 

  18. Farhat C, Lesoinne M, Patrick L, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method—part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523–1544. doi:10.1002/nme.76

    Article  MATH  Google Scholar 

  19. Gander MJ (2006) Optimized Schwarz methods. SIAM Rev 44(2):699–731

    MATH  MathSciNet  Google Scholar 

  20. Glowinski R (2015) Variational methods for the numerical solution of nonlinear elliptic problems. Society for Industrial and Applied Mathematics, Philadelphia. doi:10.1137/1.9781611973785

    Book  MATH  Google Scholar 

  21. Glowinski R, Le Tallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM studies in applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia. doi:10.1137/1.9781611970838

    Book  MATH  Google Scholar 

  22. Gosselet P, Rey C (2007) Non-overlapping domain decomposition methods in structural mechanics. Arch Comput Methods Eng 13(4):515–572

    Article  MATH  MathSciNet  Google Scholar 

  23. Gosselet P, Rixen D, Roux FX, Spillane N (2015) Simultaneous-FETI and Block-FETI: robust domain decomposition with multiple search directions. Int J Numer Methods Eng 104(10):905–927

    Article  MATH  MathSciNet  Google Scholar 

  24. Hoang TP, Japhet C, Kern M, Roberts J (2014) Ventcell conditions with mixed formulations for flow in porous media. In: Dickopf T, Gander M, Halpern L, Krause R, Pavarino L (eds) Domain decomposition methods in science and engineering XXII, Lugano, pp 531–540

  25. Jourdan F, Alart P, Jean M (1998) A Gauss–Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155(1):31–47

    Article  MATH  MathSciNet  Google Scholar 

  26. Kerfriden P, Allix O, Gosselet P (2009) A three-scale domain decomposition method for the 3D analysis of debonding in laminates. Comput Mech 44(3):343–362

    Article  MATH  Google Scholar 

  27. Koko J (2011) Uzawa block relaxation method for the unilateral contact problem. J Comput Appl Math 235(8):2343–2356

    Article  MATH  MathSciNet  Google Scholar 

  28. Ladevèze P (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Mech Eng Ser. doi:10.1007/978-1-4612-1432-8

    Article  MATH  Google Scholar 

  29. Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192(28–30):3061–3087

    Article  MATH  MathSciNet  Google Scholar 

  30. Ladevèze P, Lemoussu H, Boucard P (2000) A modular approach to 3-D impact computation with frictional contact. Comput Struct 78(1–3):45–51

    Article  Google Scholar 

  31. Lemoussu H, Boucard PA, Ladevèze P (2002) A 3D shock computational strategy for real assembly and shock attenuator. Adv Eng Softw 7–10:517–526

    Article  Google Scholar 

  32. Mandel J, Brezina M (1993) Balancing domain decomposition: theory and performance in two and three dimensions. Tech. rep., University of Colorado at Denver, Denver

  33. Parret-Fréaud A, Rey V, Gosselet P, Rey C (2017) Improved recovery of admissible stress in domain decomposition methods-application to heterogeneous structures and new error bounds for FETI-DP. Int J Numer Methods Eng. doi:10.1002/nme.5462

    MATH  MathSciNet  Google Scholar 

  34. Renouf M, Alart P (2005) Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials. Comput Methods Appl Mech Eng 194(18):2019–2041

    Article  MATH  MathSciNet  Google Scholar 

  35. Rotscher F (1927) Die Maschinenelemente. Springer, Berlin

    Google Scholar 

  36. Roulet V, Champaney L, Pa Boucard (2011) A parallel strategy for the multiparametric analysis of structures with large contact and friction surfaces. Adv Eng Softw 42(6):347–358

    Article  MATH  Google Scholar 

  37. Saavedra K, Allix O, Gosselet P (2012) On a multiscale strategy and its optimization for the simulation of combined delamination and buckling. Int J Numer Methods Eng 91(7):772–798

    Article  MATH  MathSciNet  Google Scholar 

  38. Saavedra Redlich K (2012) Stratégie multiéchelle pour l’analyse du couplage flambage-délaminage de composites stratifiés. PhD thesis, École normale supérieure de Cachan

  39. Simo JC, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 42(1):97–116

    Article  MATH  MathSciNet  Google Scholar 

  40. Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180

    Article  MATH  MathSciNet  Google Scholar 

  41. Spillane N, Rixen DJ (2013) Automatic spectral coarse spaces for robust FETI and BDD algorithms. Int J Numer Methods Eng 95(11):953–990

    Article  MATH  Google Scholar 

  42. Wriggers P (1996) Finite element methods for contact problems with friction. Tribol Int 29(8):651–658

    Article  Google Scholar 

  43. Yastrebov VA (2013) Numerical methods in contact mechanics. Numerical methods in engineering series. ISTE/Wiley, London/Hoboken

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Airbus Group Innovations and EDF for their financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Oumaziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oumaziz, P., Gosselet, P., Boucard, PA. et al. A non-invasive implementation of a mixed domain decomposition method for frictional contact problems. Comput Mech 60, 797–812 (2017). https://doi.org/10.1007/s00466-017-1444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1444-x

Keywords

Navigation