Skip to main content

A Domain Decomposition Algorithm for Contact Problems with Coulomb’s Friction

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 98))

  • 1261 Accesses

Abstract

The paper analyzes a continuous and discrete version of the Neumann–Neumann domain decomposition algorithm for two-body contact problems with Coulomb friction. Each iterative step consists of a linear elasticity problem for one body with displacements prescribed on a contact part of the boundary and a contact problem with Coulomb friction for the second body. To ensure continuity of contact stresses, two auxiliary Neumann problems in each domain are solved. Numerical experiments illustrate the performance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayada, G., Sabil, J., Sassi, T.: Convergence of Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb’s friction law. ESAIM Math. Model. Numer. Anal. 42(4), 243–262 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dostál, Z., Kozubek, T., Horyl, P.T., Brzobohatý, A.: Scalable TFETI algorithm for two dimensional multibody contact problems with friction. J. Comput. Appl. Math. 235, 403–418 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Haslinger, J., Dostál, Z., Kučera, R.: On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Eng. 191(21–22), 2261–2281 (2002)

    Article  MATH  Google Scholar 

  4. Haslinger, J., Kučera, R., Riton, J., Sassi, T.: A domain decomposition method for two-body contact problems with Tresca friction. Adv. Comput. Math. 40, 65–90 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, vol. 8. Society for Industrial and Applied Mathematics, Philadelphia (1988)

    Google Scholar 

  6. Kornhuber, R., Krause, R.: Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4(1), 9–20 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Krause, R., Wohlmuth, B.: A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci. 5(3), 139–148 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the grant GAČR P201/12/0671.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kučera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Haslinger, J., Kučera, R., Sassi, T. (2014). A Domain Decomposition Algorithm for Contact Problems with Coulomb’s Friction. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_86

Download citation

Publish with us

Policies and ethics