Skip to main content
Log in

Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Spencer AJM (1972) Deformations of fiber-reinforced materials. Oxford University Press, London

    MATH  Google Scholar 

  2. Boutin C, Soubestre J (2011) Generalized inner bending continua for linear fiber reinforced materials. Int J Solids Struct 48(3–4):517–534

    Article  MATH  Google Scholar 

  3. Pipkin AC (1979) Stress analysis for fiber-reinforced materials. Adv Appl Mech 19:1–51

    Article  MATH  Google Scholar 

  4. Hyer MW (2009) Stress analysis of fiber-reinforced composite materials. DEStech Publications. Inc., Pennsylvania

    Google Scholar 

  5. Wendt FW, Liebowitz H, Perrone N (eds) (1970) Mechanics of composite materials. Pergamon Press, Oxford

    Google Scholar 

  6. Aboudi J, Weitsman Y (1972) Impact-deflection by oblique fibers in sparsely reinforced composites. J Appl Math Phys 23:828–844

  7. Pipkin A (1977) Finite elasticity, chapter finite deformations in materials reinforced with inextensible cords. ASME AMD American Society of Mechanical Engineers 27, (pp 91–102). New York

  8. England AH (1972) The stress boundary value problem for plane strain deformations of an ideal fibre-reinforced material. J Inst Math Appl 9:310–322

    Article  MATH  Google Scholar 

  9. Hayes M, Horgan CO (1975) On mixed boundary-value problems for inextensible elastic materials. J Appl Math Phys 26:261–272

    Article  MATH  MathSciNet  Google Scholar 

  10. England AH, Ferrier JE, Thomas JN (1973) Plane strain and generalized plane stress problems for fibre-reinforced materials. J Mech Phys Solids 21:279–301

    Article  MATH  Google Scholar 

  11. Morland LW (1973) A plane theory of inextensible transversely isotropic elastic composites. Int J Solids Struct 9:1501–1518

    Article  MATH  Google Scholar 

  12. Pipkin AC, Rogers TG (1971) Plane deformations of incompressible fiber-reinforced materials. J Appl Mech 38:634–640

    Article  MATH  Google Scholar 

  13. Bradaigh CMÓ, Pipes RB (1992) A finite element formulation for highly anisotropic incompressible elastic solids. Int J Numer Method Eng 33:1573–1596

    Article  MATH  Google Scholar 

  14. Adkins JE, Rivlin RS (1955) Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords. Philos Trans R Soc Lond 248(944):201–223

    Article  MATH  MathSciNet  Google Scholar 

  15. Pucci E, Saccomandi G (1996) Some universal solutions for totally inextensible isotropic elastic materials. Q J Mech Appl Math 49(1):147

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu MZ, Kolsky H, Pipkin AC (1985) Bending theory for fiber-reinforced beams. J Compos Mater 19:235–249

    Article  Google Scholar 

  17. Rogers T, Pipkin A (1971) Small deflections of fiber-reinforced beams or slabs. J Appl Mech 38:1047–1048

    Article  Google Scholar 

  18. Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: its basis and fundamentals, 7th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  19. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  20. Simacek P, Kaliakin VN (1996) Notes on the behavior of transversely loaded inextensible plates. Int J Solids Struct 33(6):795–810

    Article  MATH  Google Scholar 

  21. Zdunek A, Rachowicz W, Eriksson T (2014) A novel computational formulation for nearly incompressible and nearly inextensible finite hyperelasticity. Comput Method Appl Mech Eng 281:220–249

    Article  MathSciNet  Google Scholar 

  22. Wriggers P, Schröder J, Auricchio F (2016) Finite element formulations for large strain anisotropic material with inextensible fibers. Adv Model Simul Eng Sci 3(1):25

    Article  Google Scholar 

  23. Helfenstein J, Jabareen M, Mazza E, Govindjee S (2010) On non-physical response in models for fiber-reinforced hyperelastic materials. Int J Solids Struct 47:2056–2061

    Article  MATH  Google Scholar 

  24. Srinivasan R, Perucchio R (1994) Finite element analysis of anisotropic non-linear incompressible elastic solids by a mixed model. Int J Numer Methods Eng 37(18):3075–3092

    Article  MATH  Google Scholar 

  25. Kaliske M (2000) A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput Methods Appl Mech Eng 185(2–4):225–243

    Article  MATH  Google Scholar 

  26. Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, Berlin

    Book  MATH  Google Scholar 

  27. Cook RD (1974) Improved two-dimensional finite element. J Struct Div ASCE ST9:1851–1863

  28. Djoko JK, Lamichhane BP, Reddy BD, Wohlmuth BI (2006) Conditions for equivalence between the Hu-Washizu and related formulation, and computational behavior in the incompressible limit. Comput Methods Appl Mech Eng 195:4161–4178

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Scalet.

Analytical solutions

Analytical solutions

In the following sections, we report the derivation of the analytical solutions of some performed numerical tests.

1.1 Traction test

The solution of the traction test carried out in Sect. 5.1 is computed by considering that the pure uniaxial traction state implies:

$$\begin{aligned} \begin{aligned}&\sigma _{xx}=q\\&\sigma _{yy}= 0 \\&\sigma _{xy}= 0 \end{aligned} \end{aligned}$$
(52)

It is possible to compute the displacement field as follows:

$$\begin{aligned} \begin{aligned} u(x,y)&= \varepsilon _{xx} \ x + \varepsilon _{xy} \ y \\ v(x,y)&= \varepsilon _{xy} \ x + \varepsilon _{yy} \ y \end{aligned} \end{aligned}$$
(53)

We then consider the stress-strain relationship (refer to system (16)):

$$\begin{aligned} \left[ \begin{array}{l} \varepsilon _{xx}\\ \varepsilon _{yy}\\ 2\varepsilon _{xy}\\ \sigma _f \end{array} \right] = \left[ \begin{array}{llll} \mathbb {S}_{11} &{}\quad \mathbb {S}_{12} &{}\quad \mathbb {S}_{13} &{}\quad \mathbb {S}_{14}\\ \mathbb {S}_{21} &{}\quad \mathbb {S}_{22} &{}\quad \mathbb {S}_{23} &{}\quad \mathbb {S}_{24} \\ \mathbb {S}_{31} &{}\quad \mathbb {S}_{32} &{}\quad \mathbb {S}_{33} &{}\quad \mathbb {S}_{34}\\ \mathbb {S}_{41} &{}\quad \mathbb {S}_{42} &{}\quad \mathbb {S}_{43} &{}\quad \mathbb {S}_{44} \end{array} \right] \left[ \begin{array}{l} \sigma _{xx}\\ \sigma _{yy}\\ \sigma _{xy}\\ 0 \end{array} \right] \end{aligned}$$
(54)

where:

$$\begin{aligned} \mathbb {S}_{11}= & {} \dfrac{a_y^4 \mu + a_x^2a_y^2 (\lambda + 2 \mu )}{(a_x^2+a_y^2)^2\mu (\lambda + 2 \mu )}\nonumber \\ \mathbb {S}_{22}= & {} \dfrac{ a_x^4 \mu + a_x^2a_y^2 (\lambda + 2 \mu )}{(a_x^2+a_y^2)^2\mu (\lambda + 2 \mu )}\nonumber \\ \mathbb {S}_{33}= & {} \dfrac{-2a_x^2a_y^2 \lambda + (a_x^4+a_y^4) (\lambda + 2 \mu )}{(a_x^2+a_y^2)^2\mu (\lambda + 2 \mu )}\nonumber \\ \mathbb {S}_{44}= & {} -\dfrac{4\mu (\lambda +\mu )}{(a_x^2+a_y^2)^2(\lambda + 2 \mu )}\nonumber \\ \mathbb {S}_{12}= & {} \mathbb {S}_{21} = -\dfrac{a_x^2 a_y^2 (\lambda + \mu )}{(a_x^2+a_y^2)^2\mu (\lambda + 2 \mu )}\\ \mathbb {S}_{13}= & {} \mathbb {S}_{31} = \dfrac{a_x a_y^3 \lambda - a_x^3 a_y (\lambda + 2 \mu )}{(a_x^2+a_y^2)^2\mu (\lambda + 2 \mu )}\nonumber \\ \mathbb {S}_{14}= & {} \mathbb {S}_{41} =\dfrac{-a_y^2 \lambda + a_x^2 (\lambda + 2 \mu )}{(a_x^2+a_y^2)^2(\lambda + 2 \mu )}\nonumber \\ \mathbb {S}_{23}= & {} \mathbb {S}_{32} = \dfrac{a_x^3 a_y \lambda - a_x a_y^3 (\lambda + 2 \mu )}{(a_x^2+a_y^2)^2\mu (\lambda + 2 \mu )} \nonumber \\ \mathbb {S}_{24}= & {} \mathbb {S}_{42} =\dfrac{-a_x^2 \lambda + a_y^2 (\lambda + 2 \mu )}{(a_x^2+a_y^2)^2(\lambda + 2 \mu )}\nonumber \\ \mathbb {S}_{34}= & {} \mathbb {S}_{43} =\dfrac{4a_x a_y(\lambda +\mu )}{(a_x^2+a_y^2)^2(\lambda + 2 \mu )}\nonumber \end{aligned}$$
(55)

After applying system (52), we can provide the following analytical solution in terms of displacement components:

$$\begin{aligned} \begin{aligned} u(x,y)&= \left( \mathbb {S}_{11}x+\dfrac{\mathbb {S}_{31}}{2}y\right) \sigma _{xx} \\ v(x,y)&= \left( \dfrac{\mathbb {S}_{31}}{2}x+\mathbb {S}_{21}y\right) \sigma _{xx} \end{aligned} \end{aligned}$$
(56)

and Lagrange multiplier:

$$\begin{aligned} \sigma _f=\mathbb {S}_{41}\sigma _{xx} \end{aligned}$$
(57)

where components \(\mathbb {S}_{11}\), \(\mathbb {S}_{21}\), \(\mathbb {S}_{31}\), and \(\mathbb {S}_{41}\) are reported in Eq. (55).

1.2 Pure bending test

The solution of the bending test carried out in Sect. 5.2 can be obtained considering the pure bending of a beam under applied moment M (see Fig. 12). The elementary beam theory predicts that stress component \(\sigma _{xx}\) varies linearly with y. Therefore, we consider the following Airy stress function \(\phi \):

$$\begin{aligned} \phi =Ay^3 \end{aligned}$$
(58)

where A is a constant to be determined.

Fig. 12
figure 12

Pure bending of a beam subject to moment M

The Airy stress function enable us to determine the stress components by applying the following relations:

$$\begin{aligned} \begin{aligned} \sigma _{xx}&= \dfrac{\partial ^2\phi }{\partial y^2} = 6Ay \\ \sigma _{yy}&= \dfrac{\partial ^2\phi }{\partial x^2} = 0 \\ \sigma _{xy}&= -\dfrac{\partial ^2\phi }{\partial x \partial y} = 0 \\ \end{aligned} \end{aligned}$$
(59)

Now, we establish a relation between the moment M and the stress distribution at the beam ends in integral form to fully define the stress field in terms of problem parameters. Particularly, after setting \(h=H/2\), we obtain:

$$\begin{aligned} M = \int _{-h}^{h} \sigma _{xx} y\ dy = 6A \int _{-h}^{h} y^2 dy = 4A h^3 \ \Rightarrow \ A = \dfrac{M}{4 h^3} \end{aligned}$$
(60)

Therefore, the stress component \(\sigma _{xx}\) becomes:

$$\begin{aligned} \sigma _{xx} = \dfrac{3M}{2h^3}y \end{aligned}$$
(61)

Now, we apply the strain-stress relationship (54) and we obtain:

$$\begin{aligned} \begin{aligned} \varepsilon _{xx}&= \dfrac{\partial u}{\partial x} =\mathbb {S}_{11} \sigma _{xx} = \mathbb {S}_{11}\dfrac{3M}{2h^3} y\\ \varepsilon _{yy}&= \dfrac{\partial v}{\partial y} =\mathbb {S}_{21} \sigma _{xx} = \mathbb {S}_{21}\dfrac{3M}{2h^3} y\\ 2\varepsilon _{xy}&= \dfrac{\partial u}{\partial y} + \dfrac{\partial v}{\partial x} = \mathbb {S}_{31}\sigma _{xx} = \mathbb {S}_{31}\dfrac{3M}{2h^3}y \end{aligned} \end{aligned}$$
(62)

where \(\mathbb {S}_{11}\), \(\mathbb {S}_{21}\), and \(\mathbb {S}_{31}\) are given in Eq. (55).

After integrating relations (62)\(_1\) and (62)\(_2\), we obtain the following displacement field:

$$\begin{aligned} \begin{aligned} u(x,y)&= \mathbb {S}_{11}\dfrac{3M}{2h^3}xy + g(y)\\ v(x,y)&= \mathbb {S}_{21}\dfrac{3M}{4h^3}y^2 + h(x) \end{aligned} \end{aligned}$$
(63)

After introducing the displacement components of Eq. (63) into (62)\(_3\), we obtain the following equation:

$$\begin{aligned} \mathbb {S}_{11}\dfrac{3M}{2h^3}x+g'(y)+h'(x) - \mathbb {S}_{31}\dfrac{3M}{2h^3}y=0 \end{aligned}$$

which can be separated into two independent relations in x and y:

$$\begin{aligned} \left\{ \begin{aligned}&h'(x) + \mathbb {S}_{11}\dfrac{3M}{2h^3}x =C_1 \\&g'(y) -\mathbb {S}_{31}\dfrac{3M}{2h^3}y = -C_1 \end{aligned} \right. \end{aligned}$$

which leads to:

$$\begin{aligned} h(x)=-\mathbb {S}_{11}\dfrac{3M}{4h^3} x^2+C_1 x + C_2 \end{aligned}$$
(64)

and

$$\begin{aligned} g(y) = \mathbb {S}_{31}\dfrac{3M}{4h^3}y^2 -C_1 y + C_3 \end{aligned}$$
(65)

By replacing Eqs. (65) and (64) into Eqs. (63), we obtain:

$$\begin{aligned} \begin{aligned} u(x,y)&= \dfrac{3M}{2h^3}\left( \mathbb {S}_{11}xy+\dfrac{1}{2}\mathbb {S}_{31}y^2\right) -C_1 y + C_3 \\ v(x,y)&= \dfrac{3M}{4h^3}\left( \mathbb {S}_{21}y^2-\mathbb {S}_{11}x^2\right) +C_1 x + C_2 \end{aligned} \end{aligned}$$
(66)

where \(C_1\), \(C_2\), and \(C_3\) are constants to be determined by applying boundary conditions.

If we apply the boundary conditions reported in Fig. 6:

$$\begin{aligned} \begin{aligned} u(0,-h)&= \mathbb {S}_{31}\dfrac{3M}{4h} + C_1 h + C_3 = 0\\ v(0,-h)&= \mathbb {S}_{21}\dfrac{3M}{4h} + C_2 = 0\\ u(0,h)&= \mathbb {S}_{31}\dfrac{3M}{4h} -C_1 h + C_3= 0 \end{aligned} \end{aligned}$$
(67)

we can compute constants \(C_1\), \(C_2\), and \(C_3\), as follows:

$$\begin{aligned} \begin{aligned} C_1&= 0\\ C_2&= -\mathbb {S}_{21}\dfrac{3M}{4h}\\ C_3&= -\mathbb {S}_{31}\dfrac{3M}{4h} \end{aligned} \end{aligned}$$
(68)

Now, setting \(M=\dfrac{fH^2}{6}\) and replacing constants \(C_1\), \(C_2\), and \(C_3\) in Eqs. (66), we obtain the following analytical solutions:

$$\begin{aligned} \begin{aligned} u(x,y)&= \dfrac{2f}{H}\left[ \mathbb {S}_{11}xy+\dfrac{1}{2}\mathbb {S}_{31}\left( y^2-\dfrac{H^2}{4}\right) \right] \\ v(x,y)&= \dfrac{f}{H}\left[ \mathbb {S}_{21}\left( y^2 -\dfrac{H^2}{4}\right) -\mathbb {S}_{11}x^2 \right] \end{aligned} \end{aligned}$$
(69)

We recall that the analytical solution under plane strain for a purely isotropic material is given by [28]:

$$\begin{aligned} \left\{ \begin{aligned}&u(x,y) = \dfrac{2f(1-\nu ^2)}{EH}x\left( \dfrac{H}{2}-y\right) \\&v(x,y) = \dfrac{f(1-\nu ^2)}{EH}\left[ x^2+\dfrac{\nu }{1-\nu }y(y-H)\right] \end{aligned} \right. \end{aligned}$$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auricchio, F., Scalet, G. & Wriggers, P. Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint. Comput Mech 60, 905–922 (2017). https://doi.org/10.1007/s00466-017-1437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1437-9

Keywords

Navigation