Skip to main content
Log in

Cross-sectional mapping for refined beam elements with applications to shell-like structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper discusses the use of higher-order mapping functions for enhancing the physical representation of refined beam theories. Based on the Carrera unified formulation (CUF), advanced one-dimensional models are formulated by expressing the displacement field as a generic expansion of the generalized unknowns. According to CUF, a novel physically/geometrically consistent model is devised by employing Legendre-like polynomial sets to approximate the generalized unknowns at the cross-sectional level, whereas a local mapping technique based on the blending functions method is used to describe the exact physical boundaries of the cross-section domain. Classical and innovative finite element methods, including hierarchical p-elements and locking-free integration schemes, are utilized to solve the governing equations of the unified beam theory. Several numerical applications accounting for small displacements/rotations and strains are discussed, including beam structures with cross-sectional curved edges, cylindrical shells, and thin-walled aeronautical wing structures with reinforcements. The results from the proposed methodology are widely assessed by comparisons with solutions from the literature and commercial finite element software tools. The attention is focussed on the high computational efficiency and the marked capabilities of the present beam model, which can deal with a broad spectrum of structural problems with unveiled accuracy in terms of geometrical representation of the domain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Note that, as in the case of this paper, the use of 3D constitutive relations does not entail Poisson locking if higher-order kinematics are employed on the cross-section, see [35, 45].

References

  1. Euler L (1744) De curvis elasticis. Bousquet, Lausanne

    Google Scholar 

  2. Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross section. Phil Mag 43:125–131

    Article  Google Scholar 

  3. Kapania RK, Raciti S (1989) Recent advances in analysis of laminated beams and plates, part I: shear effects and buckling. AIAA J 27(7):923–935

    Article  MathSciNet  MATH  Google Scholar 

  4. Kapania RK, Raciti S (1989) Recent advances in analysis of laminated beams and plates, part II: vibrations and wave propagation. AIAA J 27(7):935–946

    Article  MathSciNet  MATH  Google Scholar 

  5. Carrera E, Pagani A, Petrolo M, Zappino E (2015) Recent developments on refined theories for beams with applications. Mech Eng Rev 2(2):1–30

    Article  Google Scholar 

  6. Reddy JN (1997) On locking-free shear deformable beam finite elements. Comput Methods Appl Mech Eng 149:113–132

    Article  MATH  Google Scholar 

  7. Vinayak RU, Prathap G, Naganarayana BP (1996) Beam elements based on a higher order theory—I. Formulation and analysis of performance. Comput Struct 58(4):775–789

    Article  MATH  Google Scholar 

  8. Gruttmann F, Sauer R, Wagner W (1999) Shear stresses in prismatic beams with arbitrary cross-sections. Int J Numer Methods Eng 45:865–889

    Article  MATH  Google Scholar 

  9. Wagner W, Gruttmann F (2002) A displacement method for the analysis of flexural shear stresses in thin-walled isotropic composite beams. Comput Struct 80:1843–1851

    Article  Google Scholar 

  10. Petrolito J (1995) Siffness analysis of beams using a higher-order theory. Comput Struct 55(1):33–39

    Article  MATH  Google Scholar 

  11. Schardt R (1989) Verallgemeinerte technische biegetheorie. Springer, Berlin

    Book  Google Scholar 

  12. Davies JM, Leach P (1994) First-order generalised beam theory. J Constr Steel Res 31(2):187–220

    Article  Google Scholar 

  13. Davies JM, Leach P, Heinz D (1994) Second-order generalised beam theory. J Constr Steel Res 31(2):221–241

    Article  Google Scholar 

  14. Silvestre N, Camotim D (2002) First-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Struct 40(9):755–789

    Article  Google Scholar 

  15. Silvestre N, Camotim D (2002) Second-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Struct 40(9):791–820

    Article  Google Scholar 

  16. Silvestre N (2007) Generalised beam theory to analyse the buckling behaviour of circular cylindrical shells and tubes. Thin-Walled Struct 45:185–198

    Article  Google Scholar 

  17. Simo JC, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27(3):371–393

    Article  MathSciNet  MATH  Google Scholar 

  18. Pimienta PM, Campello EMB (2003) A fully nonlinear multi-parameter rod model incorporating general cross-section in-plane changes and out-of-plane warping. Latin Am J Solids Struct 1(1):119–140

    Google Scholar 

  19. Gonçalves R, Ritto-Corra M, Camotim D (2010) A large displacement and finite rotation thin-walled beam formulation including cross-section deformation. Comput Methods Appl Mech Eng 199(2324):1627–1643

    Article  MATH  Google Scholar 

  20. Campello EMB, Lago LB (2014) Effect of higher order constitutive terms on the elastic buckling of thin-walled rods. Thin-Walled Struct 77:8–16

    Article  Google Scholar 

  21. Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Methods Eng 9(2):87–140

    Article  MathSciNet  MATH  Google Scholar 

  22. Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 10(3):216–296

    Article  MathSciNet  MATH  Google Scholar 

  23. Carrera E, Giunta G (2010) Refined beam theories based on Carrera’s unified formulation. Int J Appl Mech 2(1):117–143

    Article  Google Scholar 

  24. Szabó B, Babuka I (1991) Finite element analysis. Wiley, London

    Google Scholar 

  25. Gordon WJ, Hall CA (1973) Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer Math 21(2):109–129

    Article  MathSciNet  MATH  Google Scholar 

  26. Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52(7):673–703

    Article  MATH  Google Scholar 

  27. Királyfalvi G, Szabó B (1997) Quasi-regional mapping for the p-version of the finite element method. Finite Elem Anal Des 27(1):85–97 (Robert J. Melosh Medal Competition)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(3941):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  29. Washizu K (1968) Variational methods in elasticity and plasticity. Pergamon, Oxford

    MATH  Google Scholar 

  30. Petrolo M, Carrera E, Giunta G (2011) Beam structures: classical and advanced theories. Wiley, London

    MATH  Google Scholar 

  31. Carrera E, Petrolo M, Zappino E (2012) Performance of CUF approach to analyze the structural behavior of slender bodies. J Struct Eng 138(2):285–297

    Article  Google Scholar 

  32. Carrera E, Pagani A, Petrolo M (2013) Use of Lagrange multipliers to combine 1D variable kinematic finite elements. Comput Struct 129:194–206

    Article  Google Scholar 

  33. Carrera E, Pagani A (2013) Analysis of reinforced and thin-walled structures by multi-line refined 1D/beam models. Int J Mech Sci 75:278–287

    Article  Google Scholar 

  34. Carrera E, Pagani A (2015) Evaluation of the accuracy of classical beam FE models via locking-free hierarchically refined elements. Int J Mech Sci 100:169–179

    Article  Google Scholar 

  35. Carrera E, Petrolo M (2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47(3):537–556

    Article  MathSciNet  MATH  Google Scholar 

  36. Carrera E, Maiarù M, Petrolo M (2012) Component-wise analysis of laminated anisotropic composites. Int J Solids Struct 49:1839–1851

    Article  Google Scholar 

  37. Carrera E, Pagani A, Petrolo M (2013) Component-wise method applied to vibration of wing structures. J Appl Mech 80(4):041012

    Article  Google Scholar 

  38. Carrera E, Pagani A, Petrolo M (2013) Classical, refined and component-wise theories for static analysis of reinforced-shell wing structures. AIAA J 51(5):1255–1268

    Article  Google Scholar 

  39. Carrera E, Pagani A, Petrolo M (2014) Refined 1D finite elements for the analysis of secondary, primary, and complete civil engineering structures. J Struct Eng 141(4):art. no. 04014123

  40. Carrera E, Pagani A (2014) Free vibration analysis of civil engineering structures by component-wise models. J Sound Vib 333(19):4597–4620

    Article  Google Scholar 

  41. Carrera E, Pagani A, Jamshed R (2016) Refined beam finite elements for static and dynamic analysis of hull structures. Comput Struct 167(C):37–49

    Article  Google Scholar 

  42. Carrera E, de Miguel AG, Pagani A (2016) Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications. Int J Mech Sci. doi:10.1016/j.ijmecsci.2016.10.009

    Google Scholar 

  43. Szabó B, Dster A, Rank E (2004) The p-version of the finite element method. Wiley, London

    Google Scholar 

  44. Pagani A, de Miguel AG, Petrolo M, Carrera E (2016) Analysis of laminated beams via unified formulation and Legendre polynomial expansions. Compos Struct 156:78–92

    Article  Google Scholar 

  45. Carrera E, Cinefra M, Zappino E, Petrolo M (2014) Finite element analysis of structures through unified formulation. Wiley, London

    Book  MATH  Google Scholar 

  46. Vlasov VZ (1961) Thin-walled elastic beams. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  47. Saint-Venant B (1855) Memoire sur la torsion des prismes. Mem Acad Sci Savants Etrangers 14:233–560

    Google Scholar 

  48. MSC Software Corporation (2010) MD Nastran 2010 quick reference guide

  49. Carrera E, de Miguel AG, Pagani A (2017) Extension of MITC to higher-order beam models and shear locking analysis of compact, thin-walled and composite structures. Submitted

  50. Belytschko T, Stolarski H, Liu WK, Carpenter N, Ong JS-J (1985) Stress projection for membrane and shear locking in shell finite elements. Comput Methods Appl Mech Eng 51:221258

    Article  MathSciNet  MATH  Google Scholar 

  51. Bathe K-J, Dvorkin E N (1986) A formulation of general shell elements the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22(3):697–722

    Article  MATH  Google Scholar 

  52. Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 3. McGraw-hill, London

    MATH  Google Scholar 

  53. Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1(1):3–20

    Article  Google Scholar 

  54. Scordelis AC, Lo KS (1964) Computer analysis of cylindrical shells. J Am Concr Inst 61:561593

    Google Scholar 

  55. Chinosi C, Della Croce L, Scapolla T (1998) Hierarchic finite elements for thin Naghdi shell model. Int J Solids Struct 35(16):1863–1880

    Article  MATH  Google Scholar 

  56. Cinefra M, Chinosi C, Della Croce L (2013) MITC9 shell elements based on refined theories for the analysis of isotropic cylindrical structures. Mech Adv Mater Struct 20(2):91–100

    Article  Google Scholar 

  57. Carrera E, Pagani A, Petrolo M (2013) Classical, refined, and component-wise analysis of reinforced-shell wing structurescomponent-wise method applied to vibration of wing structures. AIAA J 51(5):1255–1268

    Article  Google Scholar 

  58. Carrera E, Pagani A (2016) Accurate response of wing structures to free-vibration, load factors, and nonstructural masses. AIAA J 54(1):227–241

    Article  Google Scholar 

Download references

Acknowledgements

This research has been carried out within the project FULLCOMP—FULLy analysis, design, manufacturing, and health monitoring of COMPosite structures—funded by the Marie Sklodowska-Curie actions Grant Agreement No. 642121. The H2020 European Training Networks are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagani, A., de Miguel, A.G. & Carrera, E. Cross-sectional mapping for refined beam elements with applications to shell-like structures. Comput Mech 59, 1031–1048 (2017). https://doi.org/10.1007/s00466-017-1390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1390-7

Keywords

Navigation