Skip to main content
Log in

Hyper-reduction of generalized continua

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the reduced order modeling of micromorphic continua. The reduced basis model relies on the proper orthogonal decomposition and the hyper-reduction. Two variants of creation of reduced bases using the proper orthogonal decomposition are explored from the perspective of additional micromorphic degrees of freedom. In the first approach, one snapshot matrix including displacement as well as micromorphic degrees of freedom is assembled. In the second approach, snapshots matrices are assembled separately for displacement and micromorphic fields and the singular value decomposition is performed on each system separately. Thereafter, the formulation is extended to the hyper-reduction method. It is shown that the formulation has the same structure as for the classical continua. The relation of higher order stresses introduced in micromorphic balance equations to creation of the reduced integration domain is examined. Finally, the method is applied to examples of microdilatation extension and clamped tension and to a size-dependent stress concentration in Cosserat elasticity. It is shown that the proposed approach leads to a good level of accuracy with significant reduction of computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:3

    Article  MathSciNet  MATH  Google Scholar 

  2. Eringen AC, Suhubi E (1964) Nonlinear theory of simple micro-elastic solids—I. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  3. Eringen AC, Suhubi E (1964) Nonlinear theory of simple micro-elastic solids—II. Int J Eng Sci 2(2):389–404

    MATH  Google Scholar 

  4. Forest S, Sievert R (2006) Nonlinear microstrain theories. Int J Solids Struct 43(24):7224–7245

  5. Almroth B, Stern P, Brogan F (1978) Automatic choice of global shape functions in structural analysis. AIAA Journal 16(5):525–528

    Article  Google Scholar 

  6. Cuong NN, Veroy K, Patera AT (2005) Certified real-time solution of parametrized partial differential equations. In: Sidney Y (ed) Handbook of materials modeling: methods. Springer, Dordrecht, pp 1529–1564

  7. Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202(1):346–366

    Article  MathSciNet  MATH  Google Scholar 

  8. Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 77(1):75–89

    Article  MathSciNet  MATH  Google Scholar 

  9. Ryckelynck D (2009) Hyper reduction of finite strain elasto-plastic models. Int J Mater Form 2(1):567–571

    Article  MathSciNet  Google Scholar 

  10. Hernández J, Oliver J, Huespe AE, Caicedo M, Cante J (2014) High-performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng 276:149–189

    Article  MathSciNet  Google Scholar 

  11. Georgiou I (2005) Advanced proper orthogonal decomposition tools: using reduced order models to identify normal modes of vibration and slow invariant manifolds in the dynamics of planar nonlinear rods. Nonlinear Dyn 41(1–3):69–110

    Article  MathSciNet  MATH  Google Scholar 

  12. Farhat C, Avery P, Chapman T, Cortial J (2014) Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int J Numer Methods Eng 98(9):625–662

    Article  MathSciNet  MATH  Google Scholar 

  13. Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135(3):117–131

    Article  Google Scholar 

  14. Germain P (1973) La méthode des puissances virtuelles en mécanique des milieux continus. J Méc 12:236–274

    MATH  Google Scholar 

  15. Germain P (1973) The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J Appl Math 25(3):556–575

    Article  MATH  Google Scholar 

  16. Auffray N, Le Quang H, He Q-C (2013) Matrix representations for 3d strain-gradient elasticity. J Mech Phys Solids 61(5):1202–1223

    Article  MathSciNet  MATH  Google Scholar 

  17. Eringen AC (1968) Mechanics of micromorphic continua. In Kröner E (ed) Mechanics of generalized continua: proceedings of the IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany) 1967. Springer, Berlin, pp 18–35

  18. Goodman M, Cowin S (1972) A continuum theory for granular materials. Arch Ration Mech Anal 44(4):249–266

    Article  MathSciNet  MATH  Google Scholar 

  19. Cosserat E, Cosserat F (1909) Théorie des corps déformables. Paris 3:17–29

    MATH  Google Scholar 

  20. Besson J, Cailletaud G, Chaboche J-L, Forest S (2009) Non-linear mechanics of materials, vol 167. Springer, Berlin

    MATH  Google Scholar 

  21. Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: Coherent structures. Q Appl Math 45(3):561–571

    Article  MathSciNet  MATH  Google Scholar 

  22. Iollo A, Lanteri S, Désidéri J-A (2000) Stability properties of POD-Galerkin approximations for the compressible Navier–Stokes equations. Theor Comput Fluid Dyn 13(6):377–396

    Article  MATH  Google Scholar 

  23. Lutowska A (2012) Model order reduction for coupled systems using low-rank approximations. PhD thesis, Eindhoven University of Technology

  24. Fritzen F, Hodapp M, Leuschner M (2014) GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217

    Article  MathSciNet  Google Scholar 

  25. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764

    Article  MathSciNet  MATH  Google Scholar 

  26. Maday Y, Rønquist EM (2002) A reduced-basis element method. J Sci Comput 17(1–4):447–459

    Article  MathSciNet  MATH  Google Scholar 

  27. Ryckelynck D, Gallimard L, Jules S (2015) Estimation of the validity domain of hyper-reduction approximations in generalized standard elastoviscoplasticity. Adv Model Simul Eng Sci 2(1):1

    Article  Google Scholar 

  28. Patzák B, Bittnar Z (2001) Design of object oriented finite element code. Adv Eng Softw 32(10):759–767

    Article  MATH  Google Scholar 

  29. Patzák B (2012) OOFEM—an object-oriented simulation tool for advanced modeling of materials and structures. Acta Polytech 52(6):59–66

  30. Horák M, Patzák B, Jirásek M (2014) On design of element evaluators in OOFEM. Adv Eng Softw 72:193–202

    Article  Google Scholar 

  31. Radermacher A, Reese S (2014) Model reduction in elastoplasticity: proper orthogonal decomposition combined with adaptive sub-structuring. Comput Mech 54(3):677–687

    Article  MathSciNet  MATH  Google Scholar 

  32. Kaloni PN, Ariman T (1967) Stress concentration effects in micropolar elasticity. Z Angew Math Phys 18(1):136–141

    Article  Google Scholar 

  33. Dillard T, Forest S, Ienny P (2006) Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur J Mech A Solids 25(3):526–549

    Article  MATH  Google Scholar 

  34. Mindlin R (1963) Influence of couple-stresses on stress concentrations. Exp Mech 3(1):1–7

    Article  Google Scholar 

  35. Cowin SC (1970) An incorrect inequality in micropolar elasticity theory. Z Angew Math Phys 21(3):494–497

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study was carried out in the framework of project MICROMORFING (ANR-14-CE07-0035-03) funded by the Agence Nationale de la Recherche (ANR, France). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ryckelynck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horák, M., Ryckelynck, D. & Forest, S. Hyper-reduction of generalized continua. Comput Mech 59, 753–778 (2017). https://doi.org/10.1007/s00466-016-1371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1371-2

Keywords

Navigation