Skip to main content
Log in

Numerical modeling of inelastic structures at loading of steady state rolling

Thermo-mechanical asphalt pavement computation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In order to gain a deeper knowledge of the interactions in the coupled tire-pavement-system, e.g. for the future design of durable pavement structures, the paper presents recent results of research in the field of theoretical-numerical asphalt pavement modeling at material and structural level, whereby the focus is on a realistic and numerically efficient computation of pavements under rolling tire load by using the finite element method based on an Arbitrary Lagrangian Eulerian (ALE) formulation. Inelastic material descriptions are included into the ALE frame efficiently by a recently developed unsplit history update procedure. New is also the implementation of a viscoelastic cohesive zone model into the ALE pavement formulation to describe the interaction of the single pavement layers. The viscoelastic cohesive zone model is further extended to account for the normal pressure dependent shear behavior of the bonding layer. Another novelty is that thermo-mechanical effects are taken into account by a coupling of the mechanical ALE pavement computation to a transient thermal computation of the pavement cross-section to obtain the varying temperature distributions of the pavement due to climatic impact. Then, each ALE pavement simulation considers the temperature dependent asphalt material model that includes elastic, viscous and plastic behavior at finite strains and the temperature dependent viscoelastic cohesive zone formulation. The temperature dependent material parameters of the asphalt layers and the interfacial layers are fitted to experimental data. Results of coupled tire-pavement computations are presented to demonstrate potential fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Al-Qadi IL, Elseifi MA, Yoo P, Janajreh I (2005) Pavement damage due to conventional and new generation of wide-base super single tires. Sci Technol 33:210–226. doi:10.2346/1.2174344

    Google Scholar 

  2. Ameri M, Mansourian A, Khavas MH, Aliha MRM, Ayatollahi MR (2011) Cracked asphalt pavement under traffic loading a 3 D finite element analysis. Eng Fract Mech 78:1817–1826. doi:10.1016/j.engfracmech.2010.12.013

    Article  Google Scholar 

  3. Bayoumi HN, Gadala MS (2004) A complete finite element treatment for the fully coupled implicid ALE formulation. Comput Mech 33:435–452. doi:10.1007/s00466-003-0544-y

    Article  MATH  Google Scholar 

  4. Behnke R, Kaliske M (2015) Thermo-mechanically coupled investigation of steady state rolling tires by numerical simulation and experiment. Int J Non-Linear Mech 68:101–131. doi:10.1016/j.ijnonlinmec.2014.06.014

    Article  Google Scholar 

  5. Behnke R, Wollny I, Kaliske M (2013) Thermo-mechanical analysis of steady state rolling tires by numerical simulation and experiment. In: Gil-Negrete Laborda N, Alonso A (eds) Constitutive models for rubber VIII. CRC Press, Taylor & Francis Group, London

    Google Scholar 

  6. Benson D (1989) An efficient accurate simple ALE method for nonlinear finite element programs. Comput Methods Appl Mech Eng 72:305–350. doi:10.1016/0045-7825(89)90003-0

    Article  MATH  Google Scholar 

  7. Benson D (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99:235–394. doi:10.1016/0045-7825(92)90042-I

    Article  MathSciNet  MATH  Google Scholar 

  8. Blab R, Harvey JT (2002) Modeling measured 3 D tire contact stresses in a viscoelastic FE pavement model. Int J Geomech. 2:271–290. doi:10.1061/(ASCE)1532-3641 (2002) 2:3(271)

    Article  Google Scholar 

  9. Ceretti E, Filice L, Umbrello D, Micari F (2007) ALE simulation of orthogonal cutting: a new approach to model heat transfer phenomena at the tool-chip interface. CIRP Ann—Manuf Technol 56:69–72. doi:10.1016/j.cirp.2007.05.019

    Article  Google Scholar 

  10. Collop A, Scarpas A, Kasbergen C, de Bondt A (2003) Development of an elasto-visco-plastic constitutive model for asphalt. In: S.A. Atluri (ed.) ICCES–03, International Conference on Computational and Experimental Engineering and Science. Corfu, Greece (2003)

  11. Darabi MK, Abu Al-Rub RK, Masad EA, Huang CW, Little DN (2012) A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures. Int J Plast 35:100–134. doi:10.1016/j.ijplas.2012.03.001

    Article  Google Scholar 

  12. Darabi MK, Abu Al-Rub RK, Masad EA, Little DN (2012) A thermodynamic framework for constitutive modeling of time- and rate-dependent materials. Part II: Numerical aspects and application to asphalt concrete. Int J Plast 35:67–99. doi:10.1016/j.ijplas.2012.02.003

    Article  Google Scholar 

  13. Donea J, Huerta A, Ponthot J, Rodriguez-Ferran A (2004) Arbitrary Lagrangian-Eulerian methods. In: Stein E, de Borst R, Hughes T (eds) Encyclopedia of computational mechanics (fundamentals), vol 1. Wiley, Chichester, pp 414–437

    Google Scholar 

  14. Greco F, Leonetti L, Lonetti P (2015) A novel approach based on ALE and delamination fracture mechanics for multilayered composite beams. Compos Part B 78:447–458. doi:10.1016/j.compositesb.2015.04.004

    Article  Google Scholar 

  15. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  16. Kaliske M, Wollny I, Behnke R, Zopf C (2015) Holistic analysis of the coupled vehicle-tire-pavement system for the design of durable pavements. Tire Sci Technol 43:86–116. doi:10.2346/tire.15.430203

    Google Scholar 

  17. Kayser S (2007) Grundlagen zur Erfassung klimatischer Einfüsse für Dimensionierungsrechnungen von Asphaltbefestigungen. PhD thesis, Institut für Stadtbauwesen und Strassenbau, TU Dresden

  18. Koeune R, Ponthot JP (2014) A one phase thermomechanical model for the numerical simulation of semi-solid material behavior. Application to thixoforming. Int J Plast 58:120–153. doi:10.1016/j.ijplas.2014.01.004

    Article  Google Scholar 

  19. Liu WK, Belytschko T, Chang H (1986) An Arbitrary Lagrangian—Eulerian finite element method for path-dependent materials. Comput Methods Appl Mech Eng 58:227–245. doi:10.1016/0045-7825(86)90097-6

    Article  MATH  Google Scholar 

  20. Masada E, Tashmanb L, Little D, Zbibc H (2005) Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggragate characteristics. Mech Mater 37:1242–1256. doi:10.1016/j.mechmat.2005.06.003

    Article  Google Scholar 

  21. Nackenhorst U (2004) The ALE-formulation of bodies in rolling contact theoretical foundations and finite element approach. Comput Methods Appl Mech Eng 193:4299–4322. doi:10.1016/j.cma.2004.01.033

    Article  MathSciNet  MATH  Google Scholar 

  22. Netzker C, Dal H, Kaliske M (2010) An endochronic plasticity formulation for filled rubber. Int J Solids Struct 47:2371–2379. doi:10.1016/j.ijsolstr.2010.04.026

    Article  MATH  Google Scholar 

  23. Oeser M (2004) Numerical simulation of the nonlinear behavior of flexible multi-layered pavements. Ph.D thesis, Institut für Statik und Dynamik der Tragwerke, Heft 7, TU Dresden

  24. Oeser M (2010) Nichtlineare numerische Simulationsmodelle für Verkehrswegebefestigungen: unter Berücksichtigung von mechanischen, thermischen und hydraulischen Einwirkungen. Habilitationsschrift, Institut für Statik und Dynamik der Tragwerke, Heft 18, TU Dresden

  25. Olard F, Di Benedetto H (2003) General ’ 2S2P1D’ model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Mater Pavement Des 4:185–224. doi:10.1080/14680629.2003.9689946

    Google Scholar 

  26. Oldham KB, Spanier J (1988) The fractional calculus: theory and applications of differentiation and Integration to arbitrary order, vol 3. Academic Press, San Diego

    MATH  Google Scholar 

  27. Pannier S (2011) Effizienter numerischer Entwurf von Strukturen und Prozessen bei Unschärfe. PhD thesis, Institut für Statik und Dynamik der Tragwerke, Heft 23, TU Dresden

  28. Pouget S, Sauzat C, Di Benedetto H, Olard F (2010) From the behavior of constituent materials to the calculation and design of orthotropic bridge structures. Road Mater Pavement Des 11 SI EATA 2010, 111–144 doi:10.1080/14680629.2010.9690329

  29. Reddy JN, Gartling DK (2000) The finite element method in heat transfer and fluid dynamics. CRC Press, Boca Raton

    MATH  Google Scholar 

  30. Rodriguez-Ferran A, Perez-Foguet A, Huerta A (2002) Arbitrary Lagrangian—Eulerian ( ALE) formulation for hyperelastoplasticity. Int J Numer Methods Eng 53:1831–1851. doi:10.1002/nme.362

    Article  MATH  Google Scholar 

  31. Souza FV, Castro LS (2012) Effect of temperature on the mechanical response of thermo-viscoelastic asphalt pavements. Constr Build Mater 30:574–582. doi:10.1016/j.conbuildmat.2011.11.048

    Article  Google Scholar 

  32. Suwannachit A, Nackenhorst U (2013) A novel approach for thermomechanical analysis of stationary rolling tires within an ALE-kinematic framework. Tire Sci Technol 41:174–195

    Google Scholar 

  33. Tadi Beni Y, Movahhedy MR (2012) Consistent arbitrary Lagrangian Eulerian formulation for large deformation thermo-mechanical analysis. Mater Des 31:3690–3702. doi:10.1016/j.matdes.2010.03.003

    Article  Google Scholar 

  34. Van Den Bosch M, Schreurs P, Geers M (2008) On the development of a 3 D cohesive zone element in the presence of large deformations. Comput Mech 42:171–180. doi:10.1007/s00466-007-0184-8

    Article  MATH  Google Scholar 

  35. Wang G, Roque R (2011) Impact of wide-based tires on the near-surface pavement stress states based on three-dimensional tire-pavement interaction model. Road Mater Pavement Des 12:639–662. doi:10.1080/14680629.2011.9695264

    Article  Google Scholar 

  36. Wang H, Al-Qadi IL (2011) Impact quantification of wide-base tire loading on secondary road flexible pavements. J Transp Eng 137:630–639. doi:10.1061/(ASCE)TE.1943-5436.0000245

    Article  Google Scholar 

  37. Wollny I, Kaliske M (2013) Numerical simulation of pavement structures with inelastic material behavior under rolling tyres based on an Arbitrary Lagrangian Eulerian ( ALE) formulation. Road Mater Pavement Des 14:71–89. doi:10.1080/14680629.2012.735800

    Article  Google Scholar 

  38. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  39. Xue Q, Liu L, Zhao Y, Chen YJ, Li JS (2013) Dynamic behavior of asphalt pavement structure under temperature-stress coupled loading. Appl Therm Eng 53:1–7. doi:10.1016/j.applthermaleng.2012.10.055

    Article  Google Scholar 

  40. Zhu H, Sun L (2013) A viscoelastic-viscoplastic damage constitutive model for asphalt mixtures based on thermodynamics. Int J Plast 40:81–100. doi:10.1016/j.ijplas.2012.07.005

    Article  Google Scholar 

  41. Ziefle M, Nackenhorst U (2008) Numerical techniques for rolling rubber wheels: treatment of inelastic material properties and frictional contact. Comput Mech 42:337–356. doi:10.1007/s00466-008-0243-9

    Article  MathSciNet  MATH  Google Scholar 

  42. Zopf C, Garcia MA, Kaliske M (2015) A continuum mechanical approach to model asphalt. Int J Pavement Eng 16:105–124. doi:10.1080/10298436.2014.927065

    Article  Google Scholar 

  43. Zopf C, Wollny I, Kaliske M, Zeißler A, Wellner F (2015) Numerical modelling of tyre-pavement-interaction phenomena: constitutive description of asphalt behaviour based on triaxial material tests. Road Mater Pavement Des 16:133–153. doi:10.1080/14680629.2014.985246

    Article  Google Scholar 

  44. Zreid I, Fleischhauer R, Kaliske M (2013) A thermomechanically coupled viscoelastic cohesive zone model at large deformation. Int J Solids Struct 50:4279–4291. doi:10.1016/j.ijsolstr.2013.08.031

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of our research by Deutsche Forschungsgemeinschaft (DFG) under Grant KA 1163/31 (FOR 2089) and by the Excellence Initiative of the German Federal and State Governments (Institutional Strategy, measure “support the best”) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kaliske.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wollny, I., Hartung, F. & Kaliske, M. Numerical modeling of inelastic structures at loading of steady state rolling. Comput Mech 57, 867–886 (2016). https://doi.org/10.1007/s00466-016-1266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1266-2

Keywords

Navigation