Skip to main content
Log in

Stabilized tetrahedral elements for crystal plasticity finite element analysis overcoming volumetric locking

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Image-based CPFE modeling involves computer generation of virtual polycrystalline microstructures from experimental data, followed by discretization into finite element meshes. Discretization is commonly accomplished using three-dimensional four-node tetrahedral or TET4 elements, which conform to the complex geometries. It has been commonly observed that TET4 elements suffer from severe volumetric locking when simulating deformation of incompressible or nearly incompressible materials. This paper develops and examines three locking-free stabilized finite element formulations in the context of crystal plasticity finite element analysis. They include a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB) based element and a F-bar patch (FP) based element. All three formulations are based on the partitioning of TET4 element meshes and integrating over patches to obtain favorable incompressibility constraint ratios without adding large degrees of freedom. The results show that NUS formulation introduces unstable spurious energy modes, while the LIB and FP elements stabilize the solutions and are preferred for reliable CPFE analysis. The FP element is found to be computationally efficient over the LIB element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Deka D, Joseph DS, Ghosh S, Mills MJ (2006) Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242. Metall Trans A 37A(5):1371–1388

    Article  Google Scholar 

  2. Hasija V, Ghosh S, Mills MJ, Joseph DS (2003) Modeling deformation and creep in Ti-6Al alloys with experimental validation. Acta Mater 51:4533–4549

    Article  Google Scholar 

  3. Venkataramani G, Kirane K, Ghosh S (2008) Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model. Int J Plast 24:428–454

    Article  MATH  Google Scholar 

  4. Anahid M, Samal MK, Ghosh S (2011) Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline Titanium alloys. J Mech Phys Solids 59(10):2157–2176

    Article  MATH  Google Scholar 

  5. Ghosh S, Anahid M (2013) Homogenized constitutive and fatigue nucleation models from crystal plasticity fe simulations of ti alloys, part 1: macroscopic anisotropic yield function. Int J Plast 47:182–201

    Article  Google Scholar 

  6. Ghosh S, Chakraborty P (2013) Microstructure and load sensitive fatigue crack nucleation in ti-6242 using accelerated crystal plasticity fem simulations. Int J Fatigue 48:231–246

    Article  Google Scholar 

  7. Keshavarz S, Ghosh S (2013) Multi-scale crystal plasticity fem approach to modeling nickel based superalloys. Acta Mater 61:6549–6561

    Article  Google Scholar 

  8. Simmetrix (2014) http://www.simmetrix.com/

  9. Matou K, Maniatty AM (2004) Finite element formulation for modelling large deformations in elasto-viscoplastic polycrystals. Int J Numer Methods Eng 60:2313–2333

    Article  MathSciNet  MATH  Google Scholar 

  10. Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WR (2000) Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. Int J Numer Meth Eng 47:1549–1568

    Article  MATH  Google Scholar 

  11. Gee MW, Dohrmann CR, Key SW, Wall WA (2009) A uniform nodal strain tetrahedron with isochoric stabilization. Int J Numer Methods Eng 78:429–443

    Article  MathSciNet  MATH  Google Scholar 

  12. de Souza Neto EA, Andrade Pires FM, Owen DRJ (2005) F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I. Int J Numer Meth Eng 62:353–383

    Article  MATH  Google Scholar 

  13. de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, Chichester

    Book  Google Scholar 

  14. Bonet J, Marriott H, Hassan O (2001) Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications. Int J Numer Methods Eng 50:119–133

    Article  MATH  Google Scholar 

  15. Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. Int J Numer Meth Eng 67:841–867

    Article  MathSciNet  MATH  Google Scholar 

  16. Laschet G, Caylak I, Benke S, Mahnken R Locally integrated node-based formulations for four-node tetrahedral meshes. Private communication

  17. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009) A node-based smoothed finite element method (ns-fem) for upper bound solutions to solid mechanics problems. Comput Struct 87:14–26

    Article  Google Scholar 

  18. Nguyen-Xuan H, Liu GR (2013) An edge-based smoothed finite element method softened with a bubble function (bes-fem) for solid mechanics. Comput Struct 128:14–30

    Article  Google Scholar 

  19. Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (es-fem) for static, free and forced vibration analyses of solids. J Sound Vib 320:1100–1130

    Article  Google Scholar 

  20. Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (fs-fem) for 3d linear and non-linear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Meth Eng 78:324–353

    Article  MathSciNet  MATH  Google Scholar 

  21. de Souza Neto EA, Peric D, Dutko M, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33:3277–3296

    Article  MathSciNet  MATH  Google Scholar 

  22. Wolff S, Bucher C (2011) A finite element method based on c0 continuous assumed gradients. Int J Numer Methods Eng 86:876–914

    Article  MathSciNet  MATH  Google Scholar 

  23. Mahnken R, Caylak I (2008) Stabilization of bi-mixed finite elements for tetrahedral with enhanced interpolation using volume and area bubble functions. Int J Numer Methods Eng 75:377–413

    Article  MathSciNet  MATH  Google Scholar 

  24. Mahnken R, Caylak I, Laschet G (2008) Two mixed finite element formulations with area bubble functions for tetrahedral elements. Comput Methods Appl Mech Eng 197:1147–1165

    Article  MathSciNet  MATH  Google Scholar 

  25. Bathe KJ (1996) Finite element procedures. Prentice-Hall Inc., Englewood Cliffs

    MATH  Google Scholar 

  26. Staroselsky A, Anand L (2003) A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy az31b. Int J Plast 19:843–1864

    Article  MATH  Google Scholar 

  27. Busso E, Meissonier F, ODowd N (2000) Gradient-dependent deformation of two-phase single crystals. J Mech Phys Solid 48(11):2333–2361

    Article  Google Scholar 

  28. Zambaldi C, Roters F, Raabe D, Glatzel U (2007) Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy. Mater Sci Eng A 454–455:433–440

    Article  Google Scholar 

  29. Roters F, Eisenlohr P, Hantcherli L, Tjahjantoa DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater 58(4):1152–1211

    Article  Google Scholar 

  30. Asaro RJ, Needleman A (1985) Texture development and strain hardening in rate dependent polycrystals. Acta Mater 33(6):923–953

    Article  Google Scholar 

  31. Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:141–145

    Google Scholar 

  32. Venkataramani G, Ghosh S, Mills MJ (2007) A size dependent crystal plasticity finite element model for creep and load-shedding in polycrystalline Titanium alloys. Acta Mater 55:3971–3986

    Article  Google Scholar 

  33. Sinha S, Ghosh S (2006) Modeling cyclic ratcheting based fatigue life of hsla steels using crystal plasticity fem simulations and experiments. Int J Fatigue 28:1690–1704

    Article  Google Scholar 

  34. Cheng J, Ghosh S (2015) A crystal plasticity fe model for deformation with twin nucleation in magnesium alloys. Int J Plast 67:148–170

    Article  Google Scholar 

  35. Ashby MF (1970) Deformation of plastically non-homogeneous materials. Philos Mag 21:399–424

    Article  Google Scholar 

  36. Ma A, Roters F, Raabe D (2006) A dislocation density based constitutive model for crystal plasticity fem including geometrically necessary dislocations. Acta Mater 54:2169–2179

  37. Cao G, Fu L, Lin J, Zhang Y, Chen C (2000) The relationships of microstructure and properties of a fully lamellar tial alloy. Intermetallics 8:647–653

    Article  Google Scholar 

  38. Li JCM, Chou YT (2001) The role of dislocations in the flow stress grain size relationships. Metall Mater Trans 52:97–120

    Google Scholar 

  39. Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1(2):153–162

    Article  Google Scholar 

  40. Arsenlis A, Parks DM (1998) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47:1597–1611

    Article  Google Scholar 

  41. Crisfield MA (1997) Nonlinear finite element analysis of solids and structures, vol 1., EssentialsWiley, Chichester

    MATH  Google Scholar 

  42. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall Inc., Eagle Wood Cliffs

    MATH  Google Scholar 

  43. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery (spr) and adaptive finite element refinement. Comput Method Appl Mech Eng 101:207–224

    Article  MathSciNet  MATH  Google Scholar 

  44. Morawiec A (2004) Orientations and rotations: computations in crystallographic textures. Springer, Berlin

    Book  MATH  Google Scholar 

  45. Bettles CJ, Gibson MA (2005) Material rate dependence and localized deformation in crystalline solids. J Miner Methods Mater Soc 57(5):46–49

    Article  Google Scholar 

  46. Kainer KU (2003) Magnesium alloys and their applications. Wiley, Weinheim

    Book  Google Scholar 

  47. Barnett LR (2007) Twinning and the ductility of magnesium alloys: Part I: tension twins. Mater Sci Eng A464:1–7

    Article  Google Scholar 

  48. Yu Q, Zhang J, Jiang Y (2011) Fatigue damage development in pure polycrystalline magnesium under cyclic tensioncompression loading. Mater Sci Eng: A 528(25–26):7816–7826

    Article  Google Scholar 

  49. Groeber MA, Jackson MA (2014) Dream. 3d: a digital representation environment for the analysis of microstructure in 3d. Integr Mater Manuf Innov 3:5

    Article  Google Scholar 

  50. Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3d polycrystalline microstructures. Part 1: statistical characterization. Acta Mater 56(6):1257–1273

    Article  Google Scholar 

  51. Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3d polycrystalline microstructures. part 2: Synthetic structure generation. Acta Mater 56(6):1274–1287

    Article  Google Scholar 

  52. Mishra R, Inal K (2013) Microstructure data. Unpublished work

  53. Khan AS, Pandey A, Gnaupel-Herold T, Mishra RK (2011) Mechanical response and texture evolution of az31 alloy at large strains for different strain rates and temperatures. Int J Plast 27:688–706

    Article  MATH  Google Scholar 

  54. Xiaoye S Li (2005) An overview of superlu: algorithms, implementation, and user interface. Trans Math Soft 31(3):302–325

    Article  MathSciNet  MATH  Google Scholar 

  55. Meissonnier FT, Busso EP, O’Dowd NP (2001) Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains. Int J Plast 17:601–640

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Science Foundation, Mechanics and Structure of Materials Program through grant No. CMMI-1100818 (Program Manager: Dr. T. Siegmund), by the Army Research Office through grant No. W911NF-12-1-0376 (Program Manager: Dr. A. Rubinstein) and by the Air Force Office of Scientific through a grant FA9550-13-1-0062, (Program Manager: Dr. David Stargel). Computing support by the Homewood High Performance Compute Cluster (HHPC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh.

Appendix: Evaluation of the tangent stiffness matrix

Appendix: Evaluation of the tangent stiffness matrix

In this appendix, the tangent stiffness tensor \(\mathbf {C}^{t}\) in equation (8) is derived from the crystal plasticity constitutive model. \(\mathbf {C}^{t}\) at time t is expressed as:

$$\begin{aligned} \mathbf {C}^{t}=\frac{1}{det\mathbf {F}_0^t} \, \left( \mathbf {F}_0^t {\otimes } \mathbf {F}_0^t\,\right) :\mathbf {C}^{0}:\left( \mathbf {F}_0^t {\otimes } \mathbf {F}_0^t\right) \end{aligned}$$
(63)

where \(\mathbf {C}^{0}\) has been derived in [55] as:

$$\begin{aligned} \mathbf {C}^{0}= & {} \frac{\partial \,\mathbf {S}_{0}^{t}}{\partial \,\mathbf {E}_{0}^{t}}=\left( det\mathbf {F}^{p}\right) \left( \mathbf {F^{p}}\underline{\otimes }\mathbf {F}^{p}\right) ^{-1} \nonumber \\&:\left\{ \frac{\partial \mathbf {S}^{*}}{\partial \mathbf {E}}+\left[ \mathbf {S}^{*}\otimes \mathbf {F}^{p^{-T}}-\left( det\mathbf {F}^{p}\right) ^{-1}\left[ \mathbf {I}\underline{\otimes }\left( \mathbf {S}\mathbf {F}^{p^{T}}\right) ^{T}\right. \right. \right. \nonumber \\&\left. \left. \left. +\left( \mathbf {F}^{p}\mathbf {S}\right) \bar{\otimes }\mathbf {I}\right] \right] :\frac{\partial \mathbf {F}^{p}}{\partial \mathbf {E}}\right\} \end{aligned}$$
(64)

with

$$\begin{aligned}&\mathbf {S}^{*}=(det\mathbf {F}^{p})^{-1}\mathbf {F}^{p}\mathbf {S}\mathbf {F}^{p^{T}} \end{aligned}$$
(65a)
$$\begin{aligned}&\frac{\partial \mathbf {S}^{*}}{\partial \mathbf {E}}=\left[ \mathbf {I}\underline{\otimes }\mathbf {I}+\sum _{\alpha }^{N_\mathrm{slip}}\left( C^{\alpha }\otimes \frac{\partial \triangle \gamma ^{\alpha }}{\partial \mathbf {S}^{*}}\right) \right] ^{-1}\nonumber \\ {}&\qquad \quad \left[ \mathbf {A}^{\alpha }-\sum _{\alpha }^{N_\mathrm{slip}}\triangle \gamma ^{\alpha }\mathbf {B}^{\alpha }\right] \end{aligned}$$
(65b)
$$\begin{aligned}&\mathbf {A}=\mathbf {C}^{e}:\left( \mathbf {F}^{p^{-1}}\underline{\otimes } \,\mathbf {F}^{p^{-1}}\right) \end{aligned}$$
(65c)
$$\begin{aligned}&\mathbf {B}^{\alpha }=\mathbf {C}^{e}:\left[ \mathbf {F}^{p^{-T}}\underline{\otimes }\left( \mathbf {F}^{p^{-1}}\mathbf {s}_{0}^{\alpha }\right) ^{T}+\left( \mathbf {F}^{p^{-1}}\mathbf {s}_{0}^{\alpha }\right) ^{T}\underline{\otimes } \,\mathbf {F}^{p^{-T}}\right] \end{aligned}$$
(65d)
$$\begin{aligned}&\frac{\partial \mathbf {F}^{p}}{\partial \mathbf {E}}=\sum _{\alpha }^{N_\mathrm{slip}}\left( \mathbf {s}_{0}^{\alpha }\mathbf {F}^{p}\right) \otimes \left( \frac{\partial \triangle \gamma ^{\alpha }}{\partial \mathbf {S}^{*}}\frac{\partial \mathbf {S}^{*}}{\partial \mathbf {E}}\right) \end{aligned}$$
(65e)

The lower and upper tensor product operators \(\underline{\otimes }\) and \(\bar{\otimes }\) are defined as \(\left( A\underline{\otimes }B\right) _{ijkl}=A_{ik}B_{jl}\) and \(\left( A\bar{\otimes }B\right) _{ijkl}=A_{il}B_{jk}\). \(\mathbf {C}^{t}\) is a function of path-dependent state variables, i.e. \(\mathbf {C}^{t}=\mathbf {C}^{t}\left( \mathbf {F}^{t} ,{\mathbf {F}^{p}}^{t}, \dot{\gamma }^{t}, \ldots \right) \). The time-integration algorithm developed in [34] is implemented here to incrementally update state variables. The fourth order tensor \(\mathbf {C}^{t}\) is written as a \(6\times 6\) matrix, using the property of major symmetry, for implementation to finite element weak form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Shahba, A. & Ghosh, S. Stabilized tetrahedral elements for crystal plasticity finite element analysis overcoming volumetric locking. Comput Mech 57, 733–753 (2016). https://doi.org/10.1007/s00466-016-1258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1258-2

Keywords

Navigation