Skip to main content
Log in

Meshless analysis of shear deformable shells: boundary and interface constraints

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Meshless methods provide a highly continuous approximation field, convenient for thin structures like shells. Nevertheless, the lack of Kronecker Delta property makes the formulation of essential boundary conditions not straightforward, as the trial and test fields cannot be tailored to boundary values. Similar problem arise when different approximation regions must be joined, in a multi-region problem, such as kinks, folds or joints. This work presents three approaches to impose both kinematic conditions: the well-known Lagrange multiplier method, used since the beginning of the element free Galerkin method; a pure penalty approach; and the recently rediscovered alternative of Nitsche’s method. We use the discretization technique for thick Reissner–Mindlin shells and adapt the weak form as to separate displacement and rotational degrees of freedom and obtain suitable and separate stabilization parameters. This approach enables the modeling of discontinuous shells and local refinement on multi-region problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 225–228:44–54. doi:10.1016/j.cma.2012.03.008

    Article  MathSciNet  MATH  Google Scholar 

  2. Annavarapu C, Hautefeuille M, Dolbow JE (2012) Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int J Numer Methods Eng 92(2):206–228. doi:10.1002/nme.4343

    Article  MathSciNet  MATH  Google Scholar 

  3. Annavarapu C, Hautefeuille M, Dolbow JE (2013) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: intersecting interfaces. Comput Methods Appl Mech Eng 267:318–341. doi:10.1016/j.cma.2013.08.008

    Article  MathSciNet  MATH  Google Scholar 

  4. Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng 268:417–436. doi:10.1016/j.cma.2013.09.002

    Article  MathSciNet  MATH  Google Scholar 

  5. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Num Methods Eng 37(2):229–256. doi:10.1002/nme.1620370205

    Article  MathSciNet  MATH  Google Scholar 

  6. Belytschko T, Organ D, Krongauz Y (1995) A coupled finite element-element-free Galerkin method. Comput Mech 17(3):186–195. doi:10.1007/BF00364080

    Article  MathSciNet  MATH  Google Scholar 

  7. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47. doi:10.1016/S0045-7825(96)01078-X

    Article  MATH  Google Scholar 

  8. Bitencourt LAG Jr, Manzoli OL, Prazeres PGC, Rodrigues EA, Bittencourt TN (2015) A coupling technique for non-matching finite element meshes. Comput Methods Appl Mech Eng 290:19–44. doi:10.1016/j.cma.2015.02.025

  9. Campello EM, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505–518. doi:10.1007/s00466-003-0458-8

    Article  MATH  Google Scholar 

  10. Chen JS, Wang D (2006) A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates. Int J Numer Methods Eng 68(2):151–172. doi:10.1002/nme.1701

    Article  MATH  Google Scholar 

  11. Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Numer Methods Eng 47(12):2039–2072. doi:10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1

  12. Cordes LW (1080) Moran B (1996) Treatment of material discontinuity in the element-free Galerkin method. Comput Methods Appl Mech Eng 139(1–4):75–89. doi:10.1016/S0045-7825(96)01080-8

  13. Costa JC, Tiago CM, Pimenta PM (2013) Meshless analysis of shear deformable shells: the linear model. Comput Mech 52(4):763–778. doi:10.1007/s00466-013-0837-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Methods Eng 78(2):229–252. doi:10.1002/nme.2486

    Article  MathSciNet  MATH  Google Scholar 

  15. Embar A, Dolbow J, Harari I (2010) Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int J Numer Methods Eng 83(7):877–898. doi:10.1002/nme.2863

    MathSciNet  MATH  Google Scholar 

  16. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12–14), 1257–1275 doi:10.1016/j.cma.2003.12.019. Meshfree methods: recent advances and new applications

  17. Fernández-Méndez S, Bonet J, Huerta A (2005) Continuous blending of SPH with finite elements. Comput Struct 83(17–18):1448–1458. doi:10.1016/j.compstruc.2004.10.019

    Article  MathSciNet  Google Scholar 

  18. Fritz A, Hüeber S, Wohlmuth BI (2004) A comparison of mortar and Nitsche techniques for linear elasticity. CALCOLO 41(3):115–137. doi:10.1007/s10092-004-0087-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Griebel M, Schweitzer MA (2003) A particle-partition of unity method. Part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542. doi:10.1007/978-3-642-55627-2_27

  20. Guo Y, Ruess M (2015) A layerwise isogeometric approach for NURBS-derived laminate composite shells. Compos Struct 124:300–309. doi:10.1016/j.compstruct.2015.01.012

    Article  Google Scholar 

  21. Guo Y, Ruess M (2015) Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures. Comput Methods Appl Mech Eng 284:881–905. doi:10.1016/j.cma.2014.11.014

  22. Guo Y, Ruess M (2015) Weak Dirichlet boundary conditions for trimmed thin isogeometric shells. Comput Math Appl. doi:10.1016/j.camwa.2015.06.012

  23. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47–48):5537–5552. doi:10.1016/S0045-7825(02)00524-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Harari I, Dolbow JE (2010) Analysis of an efficient finite element method for embedded interface problems. Comput Mech 46(1):205–211. doi:10.1007/s00466-009-0457-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Harari I, Grosu E (2015) A unified approach for embedded boundary conditions for fourth-order elliptic problems. Int J Numer Methods Eng 104(7):655–675. doi:10.1002/nme.4813

    Article  MathSciNet  Google Scholar 

  26. Harari I, Shavelzon E (2012) Embedded kinematic boundary conditions for thin plate bending by Nitsche’s approach. Int J Numer Methods Eng 92(1):99–114. doi:10.1002/nme.4337

    Article  MathSciNet  Google Scholar 

  27. Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90(1):40–64. doi:10.1002/nme.3306

    Article  MathSciNet  MATH  Google Scholar 

  28. Huerta A, Fernández-Méndez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48(11):1615–1636. doi:10.1002/1097-0207(20000820)48:11<1615::AID-NME883>3.0.CO;2-S

  29. Huerta A, Fernández-Méndez S, Liu WK (2004) A comparison of two formulations to blend finite elements and mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1105–1117. doi:10.1016/j.cma.2003.12.009. Meshfree methods: recent advances and new applications

  30. Ivannikov V, Tiago C, Pimenta PM (2014) Meshless implementation of the geometrically exact Kirchhoff–Love shell theory. Int J Numer Methods Eng 100(1):1–39. doi:10.1002/nme.4687

    Article  MathSciNet  MATH  Google Scholar 

  31. Ivannikov V, Tiago C, Pimenta PM (2014) On the boundary conditions of the geometrically nonlinear Kirchhoff–Love shell theory. Int J Solids Struct 51(18):3101–3112. doi:10.1016/j.ijsolstr.2014.05.004

    Article  MATH  Google Scholar 

  32. Jiang W, Annavarapu C, Dolbow JE, Harari I (2015) A robust Nitsche’s formulation for interface problems with spline-based finite elements. Int J Numer Methods Eng. doi:10.1002/nme.4766

  33. Krongauz Y, Belytschko T (1996) Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Eng 131(1–2):133–145. doi:10.1016/0045-7825(95)00954-X

    Article  MathSciNet  MATH  Google Scholar 

  34. Krongauz Y, Belytschko T (1998) EFG approximation with discontinuous derivatives. Int J Numer Methods Eng 41(7):1215–1233. doi:10.1002/(SICI)1097-0207(19980415)41:7<1215:AID-NME330>3.0.CO;2

  35. Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33(20–22):3057–3080. doi:10.1016/0020-7683(95)00265-0

    Article  MATH  Google Scholar 

  36. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin. doi:10.1007/978-3-540-71471-2

  37. Li S, Hao W, Liu WK (2000) Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech 25(2–3):102–116. doi:10.1007/s004660050463

    Article  MATH  Google Scholar 

  38. Liu GR (2010) Mesh free methods: moving beyond the finite element method. CRC Press. http://books.google.de/books?id=dHKYBOYVb2gC

  39. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Dordrecht. doi:10.1007/1-4020-3468-7

  40. Lu Y, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113(3–4):397–414. doi:10.1016/0045-7825(94)90056-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Lu Y, Belytschko T, Tabbara M (1995) Element-free Galerkin method for wave propagation and dynamic fracture. Comput Methods Appl Mech Eng 126(1–2):131–153. doi:10.1016/0045-7825(95)00804-A

    Article  MathSciNet  MATH  Google Scholar 

  42. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318. doi:10.1007/BF00364252

    Article  MATH  Google Scholar 

  43. Nguyen VP, Kerfriden P, Brino M, Bordas SPA, Bonisoli E (2014) Nitsche’s method for two and three dimensional NURBS patch coupling. Comput Mech 53(6):1163–1182. doi:10.1007/s00466-013-0955-3

    Article  MathSciNet  MATH  Google Scholar 

  44. Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1):9–15. doi:10.1007/BF02995904

    Article  MathSciNet  MATH  Google Scholar 

  45. Noguchi H, Kawashima T, Miyamura T (2000) Element free analyses of shell and spatial structures. Int J Numer Methods Eng 47(6):1215–1240. doi:10.1002/(SICI)1097-0207(20000228)47:6<1215::AID-NME834>3.0.CO;2-M

  46. Pimenta PM, Campello EM (2009) Shell curvature as an initial deformation: a geometrically exact finite element approach. Int J Numer Methods Eng 78(9):1094–1112. doi:10.1002/nme.2528

    Article  MathSciNet  MATH  Google Scholar 

  47. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846. doi:10.1002/nme.4522

    Article  MathSciNet  Google Scholar 

  48. Ruess M, Schillinger D, Özcan AI, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46–71. doi:10.1016/j.cma.2013.10.009

    Article  MathSciNet  MATH  Google Scholar 

  49. Sala-Lardies E, Fernández-Méndez S, Huerta A (2012) Optimally convergent high-order X-FEM for problems with voids and inclusions. In: ECCOMAS 2012—European Congress on Computational Methods in Applied Sciences and Engineering. e-Book Full Papers, pp 8080–8093. http://hdl.handle.net/2117/17031

  50. Sanders JD, Puso MA (2012) An embedded mesh method for treating overlapping finite element meshes. Int J Numer Methods Eng 91(3):289–305. doi:10.1002/nme.4265

    Article  MathSciNet  MATH  Google Scholar 

  51. Sanders JD, Dolbow JE, Laursen TA (2009) On methods for stabilizing constraints over enriched interfaces in elasticity. Int J Numer Methods Eng 78(9):1009–1036. doi:10.1002/nme.2514

    Article  MathSciNet  MATH  Google Scholar 

  52. Sanders JD, Laursen TA, Puso MA (2012) A Nitsche embedded mesh method. Comput Mech 49(2):243–257. doi:10.1007/s00466-011-0641-2

  53. Simo J, Hughes T (1998) Computational Inelasticity. Interdisciplinary applied mathematics: mechanics and materials. Springer. http://books.google.de/books?id=ftL2AJL8OPYC

  54. Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng 73(1):53–92. doi:10.1016/0045-7825(89)90098-4

    Article  MathSciNet  MATH  Google Scholar 

  55. Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1–3):139–148 doi:10.1016/0377-0427(95)00057-7. In: Proceedings of the international symposium on mathematical modelling and computational methods modelling 94

  56. Tiago CM (2007) Meshless methods: extending the linear formulation and its generalization to geometrically exact structural analysis. PhD thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa

  57. Wriggers P, Zavarise G (2008) A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput Mech 41(3):407–420. doi:10.1007/s00466-007-0196-4

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The first author would like to thank CNPq (Conselho Nacional de Desenvolvimento Tecnológico) for his PhD grant and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for supporting his exchange stay at the Leibniz University of Hannover. The second author acknowledges the support of the CNPq under the grant 303091/2013-4 as well as expresses his gratitude to the Alexander von Humboldt Foundation for the Georg Forster Research Award that made possible his stay at the University of Duisburg-Essen and the Leibniz University of Hannover. Also, we thank Prof. Carlos Tiago, at Instituto Superior Técnico, Lisbon for many proficuous conversations on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge C. Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, J.C., Pimenta, P.M. & Wriggers, P. Meshless analysis of shear deformable shells: boundary and interface constraints. Comput Mech 57, 679–700 (2016). https://doi.org/10.1007/s00466-015-1253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1253-z

Keywords

Navigation