Skip to main content
Log in

Mechanics of hybrid polymer composites: analytical and computational study

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Three different models with increased complexity to study the effects of hybridization on the tensile failure of hybrid composites are proposed. The first model is a model for dry bundles of fibres based on the statistics of fibre strength. The second is a model for composite materials based on the multiple fragmentation phenomenon. Lastly, a micromechanical numerical model is developed that considers a random distribution of fibres and takes into account the stochastic nature of fibre strength. This study aims to understand the controlling factors that lead to pseudo-ductility, as well as establish the sequence of failure mechanisms in hybrid composites under tensile loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Arteiro A, Catalanotti G, Melro A, Linde P, Camanho P (2014) Micro-mechanical analysis of the in situ effect in polymer composite laminates. Compos Struct 116:827–840. doi:10.1016/j.compstruct.2014.06.014

    Article  Google Scholar 

  2. Bažant Z, Oh B (1983) Crack band theory for fracture of concrete. Matériaux et Construction 16(3):155–177. doi:10.1007/BF02486267

    Article  Google Scholar 

  3. Benzeggagh M, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56(4):439–449. doi:10.1016/0266-3538(96)00005-X

    Article  Google Scholar 

  4. Curtin W (1991) Exact theory of fibre fragmentation in a single-filament composite. J Mater Sci 26(19):5239–5253. doi:10.1007/BF01143218

    Article  Google Scholar 

  5. Curtin WA, Takeda N (1998) Tensile strength of fiber-reinforced composites: II. Application to polymer matrix composites. J Compos Mater 32(22):2060–2081

    Article  Google Scholar 

  6. Fiedler B, Hojo M, Ochiai S, Schulte K, Ando M (2001) Failure behavior of an epoxy matrix under different kinds of static loading. Compos Sci Technol 61(11):1615–1624

    Article  Google Scholar 

  7. Foray G, Descamps-Mandine A, R’Mili M, Lamon J (2012) Statistical flaw strength distributions for glass fibres: correlation between bundle test and afm-derived flaw size density functions. Acta Mater 60(9):3711–3718

    Article  Google Scholar 

  8. Fukuda H (1984) An advanced theory of the strength of hybrid composites. J Mater Sci 19(3):974–982. doi:10.1007/BF00540468

    Article  Google Scholar 

  9. Ibnabdeljalil M, Curtin W (1997) Strength and reliability of fiber-reinforced composites: localized load-sharing and associated size effects. Int J Solids Struct 34(21):2649–2668. doi:10.1016/S0020-7683(96)00179-5

    Article  MATH  Google Scholar 

  10. Jr LM, Dai G (2014) Hybrid carbon/glass fiber composites: micromechanical analysis of structure-damage resistance relationships. Comput Mater Sci 81:630–640. doi:10.1016/j.commatsci.2013.08.024

    Article  Google Scholar 

  11. Kelly A, Tyson W (1965) Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13(6):329–350. doi:10.1016/0022-5096(65)90035-9

    Article  Google Scholar 

  12. Martínez X (2008) Micro-mechanical simulation of composite materials using the serial/parallel mixing theory. PhD thesis, Departament de Resistència de Materials i Estructures a l’Enginyeria (RMEE)–UPC. Director: Sergio Oller

  13. Melro A, Camanho P, Pinho S (2008) Generation of random distribution of fibres in long-fibre reinforced composites. Compos Sci Technol 68(9):2092–2102. doi:10.1016/j.compscitech.2008.03.013

    Article  Google Scholar 

  14. Melro A, Camanho P, Pires FA, Pinho S (2013) Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part I—constitutive modelling. Int J Solids Struct 50(11–12):1897–1905. doi:10.1016/j.ijsolstr.2013.02.009

    Article  Google Scholar 

  15. Melro A, Camanho P, Pires FA, Pinho S (2013) Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part II—micromechanical analyses. Int J Solids Struct 50(11–12):1906–1915. doi:10.1016/j.ijsolstr.2013.02.007

    Article  Google Scholar 

  16. Rajan VP, Curtin WA (2015) Rational design of fiber-reinforced hybrid composites: a global load sharing analysis. Compos Sci Technol 117:199–207. doi:10.1016/j.compscitech.2015.06.015

    Article  Google Scholar 

  17. Scott A, Sinclair I, Spearing S, Thionnet A, Bunsell A (2012) Damage accumulation in a carbon/epoxy composite: comparison between a multiscale model and computed tomography experimental results. Compos A 43(9):1514–1522. doi:10.1016/j.compositesa.2012.03.011

    Article  Google Scholar 

  18. Scott A, Sinclair I, Spearing S, Thionnet A, Bunsell A (2012) Damage accumulation in a carbon/epoxy composite: comparison between a multiscale model and computed tomography experimental results. Compos A 43(9):1514–1522. doi:10.1016/j.compositesa.2012.03.011

  19. Simulia DS (2012) Abaqus 6.12 documentation. Providence, Rhode Island, US

  20. Soden P, Hinton M, Kaddour A (1998) Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos Sci Technol 58(7):1011–1022. doi:10.1016/S0266-3538(98)00078-5

    Article  Google Scholar 

  21. Swolfs Y, Gorbatikh L, Verpoest I (2014) Fibre hybridisation in polymer composites: a review. Compos A 67:181–200. doi:10.1016/j.compositesa.2014.08.027

    Article  Google Scholar 

  22. Swolfs Y, McMeeking R, Rajan V, Zok F, Verpoest I, Gorbatikh L (2015) Global load-sharing model for unidirectional hybrid fibre-reinforced composites. J Mech Phys Solids 84:380–394. doi:10.1016/j.jmps.2015.08.009

    Article  MathSciNet  Google Scholar 

  23. Swolfs Y, McMeeking RM, Verpoest I, Gorbatikh L (2015b) The effect of fibre dispersion on initial failure strain and cluster development in unidirectional carbon/glass hybrid composites. Compos A 69:279–287. doi:10.1016/j.compositesa.2014.12.001

    Article  Google Scholar 

  24. Swolfs Y, Morton H, Scott A, Gorbatikh L, Reed P, Sinclair I, Spearing S, Verpoest I (2015) Synchrotron radiation computed tomography for experimental validation of a tensile strength model for unidirectional fibre-reinforced composites. Compos A 77:106–113. doi:10.1016/j.compositesa.2015.06.018

    Article  Google Scholar 

  25. Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2014) Factors controlling the strength of carbon fibres in tension. Compos A 57:88–94. doi:10.1016/j.compositesa.2013.11.007

    Article  Google Scholar 

  26. Turon A, Costa J, Maimí P, Trias D, Mayugo J (2005) A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation. Part I: formulation. Compos Sci Technol 65(13):2039–2048. doi:10.1016/j.compscitech.2005.04.012

    Article  Google Scholar 

  27. Varna J, Berglund L, Ericson M (1997) Transverse single-fibre test for interfacial debonding in composites: 2. Modelling. Compos A 28(4):317–326. doi:10.1016/S1359-835X(96)00125-X

    Article  Google Scholar 

  28. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech Trans ASME 58(7):1001–1010

    MATH  Google Scholar 

  29. Zweben C (1977) Tensile strength of hybrid composites. J Mater Sci 12(7):1325–1337. doi:10.1007/BF00540846

    Article  Google Scholar 

Download references

Acknowledgments

The first and last authors would like to acknowledge the support from FCT and LAETA under the Project UID/EMS/50022/2013. M.A. Bessa and W.K. Liu would like to acknowledge the support through a subcontract from the Ford Motor Company with funding from the U.S. Department of Energys Office of Energy Efficiency and Renewable Energy (EERE), under Award Number DE-EE0006867, as well as the support by the Air Force Office of Scientific Research under the Award Number FA9550-14-1-0032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro P. Camanho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, R.P., Melro, A.R., Bessa, M.A. et al. Mechanics of hybrid polymer composites: analytical and computational study. Comput Mech 57, 405–421 (2016). https://doi.org/10.1007/s00466-015-1252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1252-0

Keywords

Navigation