Skip to main content
Log in

Surrogate model reduction for linear dynamic systems based on a frequency domain modal analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A novel model reduction methodology for linear dynamic systems with parameter variations is presented based on a frequency domain formulation and use of the proper orthogonal decomposition. For an efficient treatment of parameter variations, the system matrices are divided into a nominal and an incremental part. It is shown that the perturbed part is modally equivalent to a new system where the incremental matrices are isolated into the forcing term. To account for the continuous changes in the parameters, the single-composite-input is invoked with a finite number of predetermined incremental matrices. The frequency-domain Karhunen–Loeve procedure is used to calculate a rich set of basis modes accounting for the variations. For demonstration, the new procedure is applied to a finite element model of the Goland wing undergoing oscillations and shown to produce extremely accurate reduced-order surrogate model for a wide range of parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\({\varvec{A}}, {\varvec{B}}, {\varvec{C}}\) :

Linear system matrices

\({\varvec{A}}_0, {\varvec{B}}_0, {\varvec{C}}_0 \) :

Nominal system matrices

\({\varvec{A}}_R, {\varvec{B}}_R, {\varvec{C}}_R \) :

Reduced-order system matrices

\({\varvec{\Delta }}{\varvec{A}}, {\varvec{\Delta }}{\varvec{B}}, {\varvec{\Delta }}{\varvec{C}}\) :

Perturbed incremental system matrices

\({\varvec{p}}\) :

\(\left( {P\times 1} \right) \) generalized coord. for the second ROSM

\({\varvec{q}}_{0}\) :

\(\left( {R_0 \times 1} \right) \) generalized coord. for the nominal ROM

\({\varvec{q}}\) :

\(\left( {R\times 1} \right) \) generalized coord. for the first ROSM

\({\varvec{r}}_0\) :

\(\left( {R_0 \times 1} \right) \) statistically uncorrelated signals

\({\varvec{{\mathcal {R}}}}_0\) :

Fourier transform of \({\varvec{r}}_0\)

\({\varvec{s}}\) :

\(\left( {I\times 1} \right) \) statistically uncorrelated signals

\({\varvec{{\mathcal {S}}}}\) :

Fourier transform of \({\varvec{s}}\)

\({\varvec{u}}\) :

\(\left( {I\times 1} \right) \) system inputs

uvw :

nodal displacements

\({\varvec{{\mathcal {U}}}}\) :

Fourier transform of \({\varvec{u}}\)

\({\varvec{V}}, {\varvec{W}}\) :

Right and left eigenvectors of (15) and (19)

\({\mathcal {W}}\) :

Fourier transform of the vertical displacement w

\({\varvec{x}}\) :

\(\left( {N\times 1} \right) \) system states

\({\varvec{x}}_0\) :

Nominal solution of \({\varvec{x}}\)

\({\varvec{\Delta }}{\varvec{x}}\) :

Perturbed solution of \({\varvec{x}}\)

\({\varvec{\Delta }}{\varvec{{\mathcal {X}}}}\) :

Fourier transform of \({\varvec{\Delta }}{\varvec{x}}\)

\({\varvec{y}}\) :

\(\left( {L\times 1} \right) \) system outputs

\({\varvec{\alpha }}\) :

Eigenvector of the covariance matrix in (6)

\({\lambda }\) :

Eigenvalue of the covariance matrix in (6) or (15)

\({\varvec{\varLambda }}\) :

Diagonal matrix containing eigenvalues of (15)

\({\varvec{\varLambda }}^{\prime }\) :

Diagonal matrix containing eigenvalues of (19)

\(\lambda ^{\prime }\) :

Eigenvalue of (19)

\({\varvec{\mu }}\) :

\(\left( {H\times 1} \right) \) system parameters

\({\varvec{\phi }}\) :

\(\left( {N\times 1} \right) \) mode vector for the first ROSM

\({\varvec{\varPhi }}_{0}\) :

\(\left( {N\times R_0 } \right) \) modes set for the nominal system

\({\varvec{\varPhi }}_{1}\) :

\(\left( {N\times R_1 } \right) \) modes set for the perturbed system

\({\varvec{\varPhi }}\) :

\(\left( {N\times R} \right) \) modes set for the first ROSM

\({\varvec{\psi }}\) :

\(\left( {R\times 1} \right) \) mode vector for the second ROSM

\({\varvec{\varPsi }}\) :

\(\left( {R\times P} \right) \) modes set for the second ROSM

References

  1. Kim T (2011) System identification for coupled fluid-structures: aerodynamics is aeroelasticity minus structure. AIAA J 49(3):503–512

    Article  Google Scholar 

  2. Frangos M, Marzouk Y, Willcox K, Waander BVB (2011) Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems. In: Large-Scale Inverse Problems and Quantification of Uncertainty, chap 7, Wiley, pp 123–149

  3. Weickum G, Eldred MS, Maute K (2006) Multi-point extended reduced order modeling for design optimization and uncertainty analysis. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Newport, RI, AIAA paper 2006-2145

  4. Zimmermann R (2013) Gradient-enhanced surrogate modeling based on proper orthogonal decomposition. J Comput Appl Math 237(1):403–418

    Article  MATH  MathSciNet  Google Scholar 

  5. Paul-Dubois-Taine A, Amsallem D (2014) An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. Int J Nume Methods Eng 00:1–32

    Google Scholar 

  6. Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7):1803–1813

    Article  Google Scholar 

  7. Aguado JV, Huerta A, Chinesta F, Cueto E (2014) Real-time monitoring of thermal processes by reduced-order modeling. Int J Numer Methods Eng. doi:10.1002/nme.4784

  8. Kim T, Bussoletti JE (2001) An optimal reduced-order aeroelastic modeling based on a response-based modal analysis of unsteady CFD models. In: 42nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Seattle, WA, AIAA paper 2001-1525

  9. Kim T (2005) Efficient reduced-order system identification for linear systems with multiple inputs. AIAA J 43(7):1455–1464

    Article  Google Scholar 

  10. Kim T (1998) Frequency-domain Karhunen–Loeve method and its application to linear dynamic systems. AIAA J 36(11):2117–2123

    Article  Google Scholar 

  11. Meyer AS (2007) Variability and model adequacy in simulations in store-induced limit cycle oscillations. US Naval Academy Annapolis, MD 21402 OMB Number 074-0188

  12. Goland M (1945) Flutter of a uniform cantilever wing. J Appl Mech 12:A197–A208

    Google Scholar 

  13. Sirovich L, Kirby M, Winter M (1990) An eigenfunction approach to large scale transitional structures in jet flow. Phys Fluids A 2(2):127–136

    Article  Google Scholar 

  14. Hall K, Thomas JP, Dowell E (2000) Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J 38(10):1853–1862

    Article  Google Scholar 

  15. Kim T (2002) Component mode synthesis method based on optimal modal analysis. In: \(43{{\rm rd}}\) AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Denver, CO, AIAA paper 2002-1226

  16. Kim T, Nagaraja KS, Bhatia KG (2004) Order reduction of state-space aeroelastic models using optimal modal analysis. J Aircr 41(6):1440–1448

    Article  Google Scholar 

  17. Mirovitch L (1997) Analytical methods in vibrations. Prentice Hall

  18. Chen CT (2012) Linear system theory and design. Oxford University Press, New York

    Google Scholar 

  19. Kim T, Hong M, Bhatia KG, SenGupta G (2005) Aeroelastic model reduction for affordable computational fluid dynamics-based flutter analysis. AIAA J 43(12):2487–2495

    Article  Google Scholar 

  20. Silva WA (2008) Simultaneous excitation of multiple-input/multiple-output CFD-based unsteady aerodynamic systems. J Aircr 45(4):1267–1274

    Article  Google Scholar 

  21. Wilson EL (2004) Static and dynamic analysis of structures, 4th edn. Computers and Structures Inc, Berkeley, CA

    Google Scholar 

  22. Beran PS, Khot NS, Eastep FE, Snyder RD, Zweber JV (2004) Numerical analysis of store-induced limit-cycle oscillation. AIAA J 41(6):1315–1326

    Google Scholar 

  23. Hong MS, Bhatia KG, SenGupta G, Kim T, Kuruvila G, Silva WA (2003) Simulation of a twin-engine transport flutter model in the transonic dynamic tunnel. In: International forum on aeroelasticity and structural dynamics, Amsterdam, Netherlands

Download references

Acknowledgments

The author is grateful to Yu Qijing, a graduate research assistant, who kindly prepared the Goland wing finite element model using NASTRAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kim.

Appendix: MEPS for structural dynamic system

Appendix: MEPS for structural dynamic system

Given a structural dynamic equation of motion with mass, damping, and stiffness matrices subject to changes in parameters:

$$\begin{aligned} {\varvec{M}}\left( {\varvec{\mu }} \right) \ddot{{\varvec{x}}}+ {\varvec{B}}\left( {\varvec{\mu }} \right) \dot{{\varvec{x}}}+ {\varvec{K}}\left( {\varvec{\mu }} \right) {\varvec{x}}={\varvec{f}} \end{aligned}$$
(49)

Expanding the solution and system matrices in nominal and perturbed parts

$$\begin{aligned}&{\varvec{\mu }} ={\varvec{\mu }}_{\mathbf{0}} +{\varvec{\Delta }}{\varvec{\mu }}\nonumber \\&{\varvec{x}}\left( {{\varvec{\mu }}, t} \right) ={\varvec{x}}_{\mathbf{0}} \left( {{\varvec{\mu }}_0, t} \right) +{\varvec{\Delta }}{\varvec{x}}\left( {{\varvec{\mu }}, t} \right) \nonumber \\&{\varvec{M}}\left( {\varvec{\mu }} \right) ={\varvec{M}}_{\mathbf{0}} \left( {{\varvec{\mu }}_0 } \right) + {\varvec{\Delta }}{\varvec{M}}\left( {\varvec{\mu }} \right) \nonumber \\&{\varvec{B}}\left( {\varvec{\mu }} \right) ={\varvec{B}}_{\mathbf{0}} \left( {{\varvec{\mu }}_0} \right) +{\varvec{\Delta }}{\varvec{B}}\left( {\varvec{\mu }} \right) \nonumber \\&{\varvec{K}}\left( {\varvec{\mu }} \right) ={\varvec{K}}_{\mathbf{0}} \left( {{\varvec{\mu }}_0 } \right) + {\varvec{\Delta }}{\varvec{K}}\left( {\varvec{\mu }} \right) \end{aligned}$$
(50)

it can be shown that inserting (50) into (49) and following the previous modal analysis results in the following nominal, perturbed, and MEPS equations analogous to the equations (10), (12), and (25):

Nominal system

$$\begin{aligned} \ddot{{\varvec{x}}}_0 +\bar{{\varvec{B}}}_0 \dot{{\varvec{x}}}_0 +\bar{{\varvec{K}}}_0 {\varvec{x}}_0 =\bar{{\varvec{f}}}_0 \end{aligned}$$
(51)

Perturbed system

$$\begin{aligned}&{\varvec{\Delta }}\ddot{{\varvec{x}}}+\bar{{\varvec{B}}}_0 {\varvec{\Delta }}\dot{{\varvec{x}}}+\bar{{\varvec{K}}}_0 {\varvec{\Delta }}{\varvec{x}} +{\varvec{\Delta }}\bar{{\varvec{B}}} \left( {\dot{{\varvec{x}}}_{0} +{\varvec{\Delta }}{\varvec{x}}} \right) + {\varvec{\Delta }}\bar{{\varvec{K}}} \left( {{\varvec{x}}_0 +{\varvec{\Delta }}{\varvec{x}}} \right) \nonumber \\&\quad ={\varvec{\Delta }}\bar{{\varvec{f}}} \end{aligned}$$
(52)

MEPS

$$\begin{aligned} {\varvec{\Delta }}\ddot{{\varvec{x}}}+\bar{{\varvec{B}}}_0 {\varvec{\Delta }}\dot{{\varvec{x}}}+ \bar{{\varvec{K}}}_0 {\varvec{\Delta }}{\varvec{x}}+{\varvec{\Delta }}\bar{{\varvec{B}}} \dot{{\varvec{x}}}_0 +{\varvec{\Delta }}\bar{{\varvec{K}}} {\varvec{x}}_0 ={\varvec{\Delta }}\bar{{\varvec{f}}} \end{aligned}$$
(53)

where

$$\begin{aligned} \bar{{\varvec{B}}}_{0}\equiv & {} {\varvec{M}}_{0}^{-1} {\varvec{B}}_0, \qquad {\varvec{\Delta }}\bar{{\varvec{B}}} \equiv {\varvec{M}}^{-1}{\varvec{B}}-\bar{{\varvec{B}}}_0\nonumber \\ \bar{{\varvec{K}}}_0\equiv & {} {\varvec{M}}_0^{-1} {\varvec{K}}_0, \qquad {\varvec{\Delta }}\bar{{\varvec{K}}} \equiv {\varvec{M}}^{-1}{\varvec{K}}-\bar{{\varvec{K}}}_0\nonumber \\ \bar{{\varvec{f}}}_0\equiv & {} {\varvec{M}}_0^{-1} {\varvec{f}}, \qquad {\varvec{\Delta }}\bar{{\varvec{f}}} \equiv {\varvec{M}}^{-1}{\varvec{f}}-\bar{{\varvec{f}}}_0 \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T. Surrogate model reduction for linear dynamic systems based on a frequency domain modal analysis. Comput Mech 56, 709–723 (2015). https://doi.org/10.1007/s00466-015-1196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1196-4

Keywords

Navigation