Skip to main content
Log in

An enhanced finite element technique for diffuse phase transition

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We propose a finite element technique to enhance phase-field simulations. As adaptive p-method it and can be generally applied to finite element formulations. However, diffuse interfaces have non-linear gradients within regions typically smaller compared to the size of the overall model. Thus, enhanced field interpolation with higher polynomial functions on demand allows for coarser meshing or lower regularization length for the phase transition. Our method preserves \(C^0\) continuity of finite elements and is particularly advantageous in the context of parallelized computing. An analytical solution for the evolution of a phase-field variable governed by the Allen–Cahn equation is used to define an error measure and to investigate the proposed method. Several examples demonstrate the capability of this finite element technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. This guarantees symmetric matrices \(\mathbf{{K}}_{elem}\) and \(\mathbf{{D}}_{elem}\) in Eq. 35.

References

  1. Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Mater Res 32:163–194

    Article  Google Scholar 

  2. Münch I, Krauß M, Wagner W, Kamlah M (2012) Ferroelectric nanogenerators coupled to an electric circuit for energy harvesting. Smart Mater Struct 21:115026-1–115026-8

    Article  Google Scholar 

  3. Schmitt R, Müller R, Kuhn C, Urbassek HM (2013) A phase field approach for multivariant martensitic transformations of stable and metastable phases. Arch Appl Mech 83:849–859

    Article  MATH  Google Scholar 

  4. Rodney D, Le Bouar Y, Finel A (2003) Phase field methods and dislocations. Acta Mater 51:17–30

    Article  Google Scholar 

  5. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG (2001) Phase field microelasticity theory and modeling of multiple dislocation dynamics. Appl Phys Lett 78:2324–2326

    Article  Google Scholar 

  6. Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105504-1–105504-4

    Article  Google Scholar 

  7. Miehe C, Welschinger F, Hofacker M (2004) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311

    Article  MathSciNet  Google Scholar 

  8. Kuhn C, Müller R (2004) A new finite element technique for a phase field model of brittle fractur. Int J Numer Methods Eng 83:1273–1311

    Google Scholar 

  9. Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int J Numer Methods Eng 99:906–924

    Article  MathSciNet  Google Scholar 

  10. Kazaryan A, Wang Y, Patton BR (1999) Generalized phase field approach for computer simulation of sintering: incorporation of rigid-body motion. Scr Mater 41(5):487–492

    Article  Google Scholar 

  11. Wang YU (2006) Computer modeling and simulation of solid-state sintering: a phase field approach. Acta Mater 54:953–961

    Article  Google Scholar 

  12. Du Q, Liu C, Wang X (2006) Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J Comput Phys 212:757–777

    Article  MATH  MathSciNet  Google Scholar 

  13. Biben T, Kassner K, Misbah C (2005) Phase-field approach to three-dimensional vesicle dynamics. Phys Rev E 72:041921-1–041921-15

    Article  Google Scholar 

  14. Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140

    Article  Google Scholar 

  15. Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Comput Coupling Phase Diag Thermochem 32:268–294

    Article  Google Scholar 

  16. Provatas N, Goldenfeld N, Dantzig J (1998) Efficient computation of dendritic microstructures using adaptive mesh refinement. Phys. Rev. Lett. 80(15):3308–3311

    Article  Google Scholar 

  17. Bourdin B, Chambolle A (2000) Implementation of an adaptive finite-element approximation of the Mumford-Sah functional. Numer Math 85(4):609–646

    Article  MATH  MathSciNet  Google Scholar 

  18. Welschinger F, Hofacker M, Miehe C (2010) Configurational-force-based adaptive fe solver for a phase field model of fracture. Proc Appl Math Mech 10:689–692

    Article  Google Scholar 

  19. Li R (2005) On multi-mesh H-adaptive methods. J Sci Comput 24(3):321–341

    Article  MATH  MathSciNet  Google Scholar 

  20. Hu X, Li R, Tang T (2009) A multi-mesh adaptive finite element approximation to phase field models. Commun Comput Phys 5(5):1012–1029

    MathSciNet  Google Scholar 

  21. Taylor RL, Zienkiewicz OC, Onate E (1998) A hierarchical finite element method based on the partition of unity. Comput Methods Appl Mech Eng 152:73–84

    Article  MATH  MathSciNet  Google Scholar 

  22. Falk F (1983) Ginzburg-Landau theory of static domain walls in shape-memory alloys. Z Phys B 51:177–185

    Article  Google Scholar 

  23. Gurtin ME (1996) Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92:178–192

    Article  MATH  MathSciNet  Google Scholar 

  24. Cahn JW, Allen SM (1977) A microscopic theory of domain wall motion and its experimental verification in Fe–Al alloy domain growth kinetics. J Phys Colloques 38(C7):51–54

    Article  Google Scholar 

  25. Wang J, Kamlah M, Zhang T-Y (2009) Phase field simulations of ferroelectric nanoparticles with different long-range-electrostatic and -elastic interactions. J Appl Phys 105:014104-1–014104-8

    Google Scholar 

  26. Padilla J, Zhong W, Vanderbilt D (1996) First-principle investigation of \(180^{\circ }\) domain walls in BaTiO\(_3\). Phys Rev B 5310:5969–5973

    Article  Google Scholar 

  27. Zienkiewicz OC, De JP, Gago SR, Kelly DW (1983) The hierarchical concept in finite element analysis. Comput Struct 16(1–4):53–65

    Article  MATH  Google Scholar 

  28. Peano A, Rodin EY (1976) Hierarchies of conforming finite elements for plane elasticity and plate bending. Comput Math Appl 2:211–224

    Article  MATH  Google Scholar 

  29. Babuska I, Szabo BA, Katz IN (1981) The p-version of the finite element method. SIAM J Numer Anal 18(3):515–545

    Article  MATH  MathSciNet  Google Scholar 

  30. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  MATH  MathSciNet  Google Scholar 

  31. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Münch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münch, I., Krauß, M. An enhanced finite element technique for diffuse phase transition. Comput Mech 56, 691–708 (2015). https://doi.org/10.1007/s00466-015-1195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1195-5

Keywords

Navigation