Skip to main content
Log in

Nonlinear reduced order homogenization of materials including cohesive interfaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The mechanical response of composite materials is strongly influenced by the nonlinear behavior of the interface between the constituents. In order to make reliable yet computationally efficient predictions for such materials, a reduced order model is developed. Conceptual ideas of the NTFA (Michel and Suquet, Int J Solids Struct 40:6937–6955, 2003, Comput Methods Appl Mech Eng 193:5477–5502, 2004) and of the pRBMOR (Fritzen, Hodapp and Leuschner Comput Methods Appl Mech Eng 260:143–154, 2013, Fritzen et al., Comput Methods Appl Mech Eng 278:186–217, 2014) are adopted. The key idea is to parameterize the displacement jumps on the cohesive interfaces by a reduced basis of global ansatz functions. Micromechanical considerations and the potential structure of the constitutive models lead to a variational formulation and reduced equilibrium conditions. The effect of the preanalysis phase on the accuracy is investigated using geometrically optimal training directions. The reduced model is tested for three-dimensional microstructures. Besides the effective stress response, the tension–compression asymmetry and the distribution of the separation of the interface are investigated. Memory savings on the order of \(10^5\) are realized. The computing time is reduced considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Except for two cases: (a) the minor increase of the max. error in Fig. 10, bottom left for \(N_\mathrm{dir}=64\) and \(N_\zeta \) around 48; (b) the better accuracy for \(N_\mathrm{dir}=64\) over \(128\) for \(N_\zeta =20\).

References

  1. Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937–6955

    Article  MATH  MathSciNet  Google Scholar 

  2. Michel JC, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193:5477–5502

    Article  MATH  MathSciNet  Google Scholar 

  3. Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154

    Article  MATH  MathSciNet  Google Scholar 

  4. Fritzen F, Hodapp M, Leuschner M (2014) GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217

    Article  MathSciNet  Google Scholar 

  5. Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Berlin

    Google Scholar 

  6. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58

    Article  MATH  Google Scholar 

  7. Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342

    Article  MathSciNet  Google Scholar 

  8. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352

    Article  MathSciNet  Google Scholar 

  9. Mori T, Tanaka K (1973) Average stress in a matrix and average elastic energy of materials with misfitting inclusions. Acta Metall Mater 23:571–574

    Article  Google Scholar 

  10. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam

    Google Scholar 

  11. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679

    Article  MATH  Google Scholar 

  12. Fritzen F, Böhlke T (2011) Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites. Int J Solids Struct 48:706–718

    Article  MATH  Google Scholar 

  13. Ponte-Castañeda P (1991) The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39(1):45–71

    Article  MATH  MathSciNet  Google Scholar 

  14. Ponte-Castañeda P (1992) New variational principles in plasticity and their application to composite materials. J Mech Phys Solids 40(8):1757–1788

    Article  MATH  MathSciNet  Google Scholar 

  15. Suquet P (1992) On bounds for the overall potential of power law materials containing voids with an arbitrary shape. Mech Res Commun 19(1):51–58

    Article  MATH  MathSciNet  Google Scholar 

  16. Ponte-Castañeda P (2002) Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I theory. J Mech Phys Solids 50(4):737–757

    Article  MATH  MathSciNet  Google Scholar 

  17. Lahellec N, Suquet P (2007) On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles. J Mech Phys Solids 55(9):1932–1963

    Article  MATH  MathSciNet  Google Scholar 

  18. Lahellec N, Suquet P (2007) On the effective behavior of nonlinear inelastic composites: II: A second-order procedure. J Mech Phys Solids 55(9):1964–1992

    Article  MATH  MathSciNet  Google Scholar 

  19. Danas K, Ponte-Castañeda P (2009) A finite-strain model for anisotropic viscoplastic porous media: I–Theory. Eur J Mech A 28(3):387–401

    Article  MATH  MathSciNet  Google Scholar 

  20. Feyel F, Chaboche JL (2000) FE\(^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330

    Article  MATH  Google Scholar 

  21. Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. J Numer Methods Eng 55:1285–1322

    Article  MATH  MathSciNet  Google Scholar 

  22. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48–51):5525–5550

    Article  MATH  Google Scholar 

  23. Drosopoulos GA, Wriggers P, Stavroulakis GE (2014) A multi-scale computational method including contact for the analysis of damage in composite materials. Comput Mater Sci 95:522–535

    Article  Google Scholar 

  24. Carrere N, Maire JF, Kruch S, Chaboche JL (2004) Multiscale analysis of SiC/Ti composites. Mater Sci Eng A 365(1—-2):275–281 (Multiscale Materials Modelling)

    Article  Google Scholar 

  25. Verhoosel CV, Remmers JJC, Gutiérrez MA, de Borst R (2010) Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Methods Eng 83(8–9):1155–1179

    Article  MATH  Google Scholar 

  26. Fritzen F, Hodapp M (2015) The Finite Element Square Reduced (FE\(^{{2}\text{R}}\)) method with GPU acceleration: towards threedimensional two-scale simulations. Int J Numer Meth Eng (submitted)

  27. Ladevèze P, Passieux JC, Néron D (2010) The latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296. doi:10.1016/j.cma.2009.06.023

    Article  MATH  Google Scholar 

  28. Lamari H, Ammar A, Cartraud P, Legrain G, Chinesta F, Jacquemin F (2010) Routes for efficient computational homogenization of nonlinear materials using the proper generalized decompositions. Arch Comput Methods Eng 17(4):373–391. doi:10.1007/s11831-010-9051-4

    Article  MATH  MathSciNet  Google Scholar 

  29. Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372. doi:10.1007/s11831-010-9053-2

    Article  MATH  MathSciNet  Google Scholar 

  30. Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 77(1):75–89. doi:10.1002/nme.2406

    Article  MATH  MathSciNet  Google Scholar 

  31. Ryckelynck D, Benziane D (2010) Multi-level a priori hyper reduction of mechanical models involving internal variables. Comput Methods Appl Mech Eng 199:1134–1142

    Article  MATH  Google Scholar 

  32. Astrid P, Weiland S, Willcox K, Backx T (2004) Missing point estimation in models described by proper orthogonal decomposition. In: 43rd IEEE conference on decision and control, 2004. CDC, vol 2, pp 1767–1772. doi:10.1109/CDC.2004.1430301

  33. Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251. doi:10.1109/TAC.2008.2006102

    Article  MathSciNet  Google Scholar 

  34. Barrault M, Maday Y, Nguyen N, Patera A (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Math Acad Sci Paris Ser I 339:667–672

    Article  MATH  MathSciNet  Google Scholar 

  35. Chaturantabut S, Sorensen DC (2012) A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J Numer Anal 50(1):46–63

    Article  MATH  MathSciNet  Google Scholar 

  36. Hernández J, Oliver J, Huespe A, Caicedo M, Cante J (2014) High-performance model reduction techniques in computationalmultiscale homogenization. Comput Methods Appl Mech Eng 276:149–189. doi:10.1016/j.cma.2014.03.011

    Article  Google Scholar 

  37. Engquist EWB (2003) The heterognous multiscale methods. Commun Math Sci 1(1):87–132

    Article  MATH  MathSciNet  Google Scholar 

  38. Abdulle A, Bai Y (2012) Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J Comput Phys 231(21):7014–7036. doi:10.1016/j.jcp.2012.02.019

    Article  MATH  MathSciNet  Google Scholar 

  39. Fritzen F, Böhlke T (2010) Three-dimensional finite element implementation of the nonuniform transformation field analysis. Int J Numer Methods Eng 84(7):803–829

  40. Fritzen F, Böhlke T (2013) Reduced basis homogenization of viscoelastic composites. Compos Sci Technol 76:84–91

    Article  Google Scholar 

  41. Halphen B, Nguyen QS (1975) Sur les matériaux standards generalisés. Journal de Mécanique 14(1):39–63

    MATH  Google Scholar 

  42. Fritzen F, Forest S, Böhlke T, Kondo D, Kanit T (2012) Computational homogenization of elasto-plastic porous metals. Int J Plast 29:102–119

    Article  Google Scholar 

  43. Feyel F (1999) Multiscale FE\(^{2}\) elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1–4):344–354

  44. Feyel F (2003) A multilevel finite element method (FE\(^{2}\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(192):3233–3244

    Article  MATH  Google Scholar 

  45. Fritzen F (2011) Microstructural modeling and computational homogenization of the physically linear and nonlinear constitutive behavior of micro-heterogeneous materials. Schriftenreihe Kontinuumsmechanik im Maschinenbau 1, KIT Scientific Publishing, Karlsruhe. ISBN 978-3-86644-699-1

  46. Yvonnet J, Gonzalez D, He QC (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198(33–36):2723–2737

    Article  MATH  Google Scholar 

  47. Yvonnet J, Monteiro E, He QC (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. J Multiscale Comput Eng 11(3):201–225

    Article  Google Scholar 

  48. Fritzen F, Kochmann D (2014) Material instability-induced extreme damping in composites: a computational study. Int J Solids Struct 51:4101–4112

    Article  Google Scholar 

  49. Böhlke T, Brüggemann C (2001) Graphical representation of the generalized Hooke’s law. Technische Mechanik 21(2):145–158

    Google Scholar 

  50. Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc Lond A 437:311–327

    Article  MATH  MathSciNet  Google Scholar 

  51. Dvorak GJ, Bahei-El-Din YA, Wafa AM (1994) The modeling of inelastic composite materials with the transformation field analysis. Model Simul Mater Sci Eng 2(2):571–586

    Article  Google Scholar 

  52. Haasdonk B (2013) Convergence rates of the POD-Greedy method. ESAIM 47:859–873

    Article  MATH  MathSciNet  Google Scholar 

  53. Schölkopf B, Smola AJ (2002) Learning with Kernels: support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning series. MIT Press, Cambridge. ISBN 0-262-19475-9; 978-0-262-19475-4

  54. Wirtz D, Karajan N, Haasdonk B (2015) Surrogate modeling of multiscale models using kernel methods. Int J Numer Methods Eng 101(1):1–28

    Article  MathSciNet  Google Scholar 

  55. Leuschner M, Fritzen F, van Dommelen JAW, Hoefnagels JPM (2015) Potential-based constitutive models for cohesive interfaces: theory, implementation and examples. Compos Part B 68:38–50

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the German research foundation (DFG), grant numbers FR-2702/3, FR-2702/4, FR-2702/7 and within the Emmy Noether program of DFG via grant DFG-FR2702/6. The valuable input in the context of the CoSiMOR scientific network (funded by DFG grants FR-2702/4 and FR-2702/7) and, in particular, the discussions with Bernard Haasdonk regarding kernel methods are acknowledged. Additionally, funding of this work within the KIT YIG Computer Aided Material Modeling via the Karlsruhe Institute of Technology (KIT) in the context of the Excellence Initiative of the German Research Foundation (DFG) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Fritzen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritzen, F., Leuschner, M. Nonlinear reduced order homogenization of materials including cohesive interfaces. Comput Mech 56, 131–151 (2015). https://doi.org/10.1007/s00466-015-1163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1163-0

Keywords

Navigation