Skip to main content
Log in

Computational homogenization of rope-like technical textiles

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This contribution investigates a computational homogenization method for one-dimensional technical textiles i.e. ropes or cables. On the macroscopic level rope-like textiles are characterized by a large length-to-thickness ratio, such that a discretization with structural elements, i.e. beam elements, is numerically efficient. The material behavior is, however, strongly influenced by the heterogeneous micro structure. Here, the fibers at the micro structure are modeled explicitly via a representative volume element whereby the contact interactions between fibers are captured. To transfer the microscopic response to the macro level a beam specific homogenization scheme is introduced. Theoretical aspects are discussed, e.g. the advocated beam specific power averaging theorem and the corresponding scale transition, and numerical examples for periodic rope-like structures are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hemmerlein J (2005) Steel wire rope, http://de.wikipedia.org/wiki/Stahlseil#mediaviewer/Datei:Steel_wire_rope, License: creative commons by-sa 3.0 de

  2. Miehe C (2003) Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Method Appl Mech Eng 192:559–591

    Article  MATH  MathSciNet  Google Scholar 

  3. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Method Appl Mech Eng 193:5525–5550

    Article  MATH  Google Scholar 

  4. Ponte Castañeda P, Tiberio E (2000) A second-order homogenization method in finite elasticity and applications to black-filled elastomers. J Mech Phys Solids 48:1389–1411

    Article  MATH  MathSciNet  Google Scholar 

  5. Temizer I, Wriggers P (2006) An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput Method Appl Mech Eng 196:3409–3423

    Article  MathSciNet  Google Scholar 

  6. Bathe KJ, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14:961–986

    Article  MATH  Google Scholar 

  7. Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Method Eng 54:1775–1788

    Article  MATH  MathSciNet  Google Scholar 

  8. Gruttmann F, Sauer R, Wagner W (2000) Theory and numerics of tree-dimensional beams with elastoplastic material behaviour. Int J Numer Method Eng 48:1675–1702

    Article  MATH  Google Scholar 

  9. Fillep S, Mergheim J, Steinmann P (2013) Computational modelling and homogenization of technical textiles. Eng Struct 50:68–73

    Article  Google Scholar 

  10. Geers MGD, Coenen E, Kouznetsova VG (2007) Multi-scale computational homogenization of structured thin sheets. Model Simul Mater Sci Eng 15:373–404

    Google Scholar 

  11. Cartraud P, Messager T (2006) Computational homogenization of periodic beam-like structures. Int J Solids Struct 43:686–696

    Article  MATH  MathSciNet  Google Scholar 

  12. Lefik M, Schrefler BA (1994) 3-D finite element analysis of composite beams with parallel fibres, based on homogenization theory. Comput Mech 14:2–15

    Article  MATH  Google Scholar 

  13. Rabczuk T, Kim JY, Samaniego E, Belytschko T (2004) Homogenization of sandwich structures. Int J Numer Method Eng 61:1009–1027

    Article  MATH  Google Scholar 

  14. Wriggers P, Zavarise G (1997) On contact between tree-dimensional beams undergoing large deflections. Commun Numer Methods Eng 13:429–438

    Article  MATH  MathSciNet  Google Scholar 

  15. Litewka P, Wriggers P (2012) Frictional contact between 3D beams. Comput Mech 28:26–39

    Article  Google Scholar 

  16. Durville D (2005) Numerical simulation of entangled materials machanical properties. J Mater Sci 40:5941–5948

    Article  Google Scholar 

  17. Konyukhov A, Schweizerhof K (2012) Geometrically exact theory for contact interactions of 1D manifolds. Algorithmic implementation with various finite element models. Comput Methods Appl Mech Eng 205–208:130–138

    Article  MathSciNet  Google Scholar 

  18. Nemov AS, Voynov IB, Borovkov AI, Boso DP, Schrefler BA (2010) Generalized stiffness coefficients for ITER superconducting cables, direct FE modeling and initial configuration. Cryogenics 50:304–313

    Article  Google Scholar 

  19. Bajas H, Durville D, Devred A (2012) Finite element modelling of cable-in-conduit conductors. Supercond Sci Technol 25:054019

    Article  Google Scholar 

  20. Frischkorn J, Reese S (2012) A solid-beam finite element and non-linear constitutive modelling. Comput Methods Appl Mech Eng 265:195–212

    Article  MathSciNet  Google Scholar 

  21. Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44:497–524

  22. Laursen TA, Simo JC (1993) A continuum- based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int J Numer Methods Eng 36:3451–3485

  23. Green AE, Zerna W (1954) Theoretical elasticity. Clarendon Press, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Fillep.

Appendix: weak form

Appendix: weak form

For the scale transitions the local Euler equations are needed. They result from the first equation of motion

$$\begin{aligned} \int \limits _{\mathcal {B}_0} \rho _0 \ddot{{\varvec{\varphi }}} dV= \int \limits _{\mathcal {B}_0} {\varvec{b}}_0 dV + \int \limits _{\mathcal {\partial B}_0}{\varvec{t}}_0 dA, \end{aligned}$$
(57)

where \(\rho _0\) is the material density and \({\varvec{b}}_0\) is the vector of volume forces in the material configuration. The traction vector is defined by \({\varvec{t}}_0= {\varvec{P}}\cdot {\varvec{n}}_0\) with the outward unit normal \({\varvec{n}}_0=n_i {\varvec{G}}^i\) with the covariant components \(n_i\) of \({\varvec{n}}\). It appears for an area element \(dA_i\) at the coordinate surface \(\theta ^i=\)const. that

$$\begin{aligned} {\varvec{n}}_0 dA=\frac{{\varvec{G}}^i}{\sqrt{G^{(ii)}}} dA_i, \end{aligned}$$
(58)

and therewith

$$\begin{aligned} n_i\sqrt{G^{(ii)}} dA = dA_i, \end{aligned}$$
(59)

where \(\sqrt{G^{(ii)}}\) is the norm of the vector \({\varvec{G}}^i\) [23]. An incremental force \(d {\varvec{f}}\) follows as

$$\begin{aligned} d{\varvec{f}} = {\varvec{t}}_0 dA = \frac{{\varvec{t}}_{0}}{n_i \sqrt{G^{(ii)}}} dA_i = {\varvec{t}}_0 \frac{\sqrt{G}}{n_i}d\theta ^j d\theta ^k={\varvec{t}}^i d\theta ^j d\theta ^k,\nonumber \\ \end{aligned}$$
(60)

with \(dA_i=\sqrt{G G^{(ii)}}d\theta ^j d\theta ^k\). It can be shown, that the tractions \({\varvec{t}}^i\) correspond to those in (24) by

$$\begin{aligned} d{\varvec{f}} \!=\! {\varvec{t}}_0 dA \!=\! {\varvec{P}} \cdot {\varvec{n}}_0 dA = \sqrt{G} {\varvec{P}} \cdot {\varvec{G}}^i d \theta ^j d\theta ^k={\varvec{t}}^i d\theta ^j d\theta ^k.\nonumber \\ \end{aligned}$$
(61)

Inserting (60) in the last term of (57) and applying the Gaussian theorem and a transformation to the parameter space of the curvilinear coordinates renders eventually

$$\begin{aligned} \int \limits _{\mathcal {\partial B}_0}{\varvec{t}}_0 dA&= \int \limits \limits _{\mathcal {\partial B}_0}{\varvec{t}}^i \frac{ n_{i}}{\sqrt{G}} dA = \int \limits _{\mathcal {B}_0} {\varvec{t}}^i_{,i} \frac{1}{\sqrt{G}} dV\nonumber \\&= \int \!\!\int \!\!\int \limits _{\theta ^k \theta ^j \theta ^i} {\varvec{t}}^i_{,i}d\theta ^i d\theta ^j d\theta ^k. \end{aligned}$$
(62)

Therewith (57) in the parameter space results as

$$\begin{aligned} \int \!\!\int \!\!\int \limits _{\theta ^1 \theta ^2\theta ^3 } {\varvec{t}}^i_{,i}+ \sqrt{G} [\rho _0 \ddot{{\varvec{\varphi }}}-{\varvec{b}}_0 ]d\theta ^3 d\theta ^2 d\theta ^1={\varvec{0}}. \end{aligned}$$
(63)

The first equation of motion in local form in the material configuration is therefore

$$\begin{aligned} {\varvec{t}}^i_{,i}+ \sqrt{G} [\rho _0 \ddot{{\varvec{\varphi }}}-{\varvec{b}}_0 ]={\varvec{0}}. \end{aligned}$$
(64)

If the acceleration is assumed to be zero and in the absence of volume forces (64) simplifies to

$$\begin{aligned} {\varvec{t}}^i_{,i}={\varvec{0}}. \end{aligned}$$
(65)

With the variation of the position \(\delta {\varvec{\varphi }}\) the weak form results as

$$\begin{aligned} \int \!\!\int \!\!\int \limits _{\theta ^1 \theta ^2\theta ^3 } \delta {\varvec{\varphi }}\cdot {\varvec{t}}^i_{,i} d\theta ^1 d\theta ^2 d\theta ^3=0, \end{aligned}$$
(66)

and with the beam kinematics (2) it becomes

$$\begin{aligned}&\int \limits _{\theta ^1 } \delta {{\varvec{\varphi }}}_{\mathcal {L}}\cdot \left[ \iint \limits _{\theta ^2\theta ^3 } {\varvec{t}}^i_{,i} d\theta ^3 d\theta ^2 \right] d\theta ^1 \nonumber \\&\quad + \int \limits _{\theta ^1 } \delta {\varvec{d}}_\alpha \cdot \left[ \iint \limits _{ \theta ^2\theta ^3 } \theta ^\alpha {\varvec{t}}^i_{,i} d\theta ^3 d\theta ^2 \right] d\theta ^1=0. \end{aligned}$$
(67)

The integrals in thickness direction can be simplified by using Eq. (50) to render

$$\begin{aligned}&\iint \limits _{\theta ^2\theta ^3 } {\varvec{t}}^i_{,i}d\theta ^3 d\theta ^2 =\iint \limits _{\theta ^2\theta ^3 }{\varvec{t}}^1_{,1}d\theta ^3 d \theta ^2+\iint \limits _{ \theta ^2\theta ^3 }{\varvec{t}}^\alpha _{,\alpha }d\theta ^3 d\theta ^2 \nonumber \\&\quad =\left[ \,\iint \limits _{\theta ^2\theta ^3 }{\varvec{t}}^1 d\theta ^3 d\theta ^2\right] _{,1} + \int \limits _{\theta ^3 }[{\varvec{t}}^2]^{h^+_2}_{h^-_2}d\theta ^3+ \int \limits _{\theta ^2}[{\varvec{t}}^3]^{h^+_3}_{h^-_3}d\theta ^2 \nonumber \\&\,=: {\varvec{N}}^1_{,1}+ {{\varvec{n}}}^\alpha , \end{aligned}$$
(68)

and by introducing \([\theta ^\alpha {\varvec{t}}^\alpha ]_{,\alpha }= {\varvec{t}}^\alpha + \theta ^\alpha {\varvec{t}}^\alpha _{,\alpha }\) it holds that

$$\begin{aligned}&\iint \limits _{\theta ^2\theta ^3 } \theta ^\alpha {\varvec{t}}^i_{,i}d\theta ^3 d\theta ^2 =\iint \limits _{\theta ^2\theta ^3 } \theta ^\alpha {\varvec{t}}^1_{,1}d\theta ^3 d\theta ^2+\iint \theta ^\alpha {\varvec{t}}^\alpha _{,\alpha }d\theta ^3 d\theta ^2 \nonumber \\&\quad = \left[ \iint \limits _{\theta ^2\theta ^3 } \theta ^\alpha {\varvec{t}}^1d\theta ^3 d\theta ^2 \right] _{,1}-\iint \limits _{ \theta ^2\theta ^3 } {\varvec{t}}^\alpha d\theta ^3 d\theta ^2 \nonumber \\&\qquad + \int \limits _{\theta ^3 }[\theta ^2 {\varvec{t}}^2]^{h^+_2}_{h^-_2}d\theta ^3+\int \limits _{\theta ^2}[\theta ^3{\varvec{t}}^3]^{h^+_3}_{h^-_3}d\theta ^2 \nonumber \\&\quad =: {\varvec{M}}^\alpha _{,1} - {\varvec{N}}^\alpha +{{\varvec{m}}}^\alpha \,. \end{aligned}$$
(69)

Therewith (67) reads

$$\begin{aligned}&\int \limits _{\theta ^1 } \delta {{\varvec{\varphi }}}_\mathcal {L}\cdot \left[ {\varvec{N}}^1_{,1}+ {{\varvec{n}}}^\alpha \right] d\theta ^1 \nonumber \\&\quad + \int \limits _{\theta ^1} \delta {\varvec{d}}_\alpha \cdot \left[ {\varvec{M}}^\alpha _{,1} - {\varvec{N}}^\alpha + {{\varvec{m}}}^\alpha \right] d\theta ^1=0. \end{aligned}$$
(70)

The distributed line loads \({{\varvec{n}}}^\alpha \) and \({{\varvec{m}}}^\alpha \) are here considered to be zero and the local Euler equations thus result in

$$\begin{aligned} {\varvec{N}}^1_{,1} = {\varvec{0}} \quad \text {and}\quad {\varvec{M}}^\alpha _{,1}={\varvec{N}}^\alpha . \end{aligned}$$
(71)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fillep, S., Mergheim, J. & Steinmann, P. Computational homogenization of rope-like technical textiles. Comput Mech 55, 577–590 (2015). https://doi.org/10.1007/s00466-015-1124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1124-7

Keywords

Navigation