Skip to main content
Log in

Fluid-structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper considers numerical simulations of fluid-structure interaction (FSI) problems in hemodynamics for idealized geometries of healthy cerebral arteries modeled by both nonlinear isotropic and anisotropic material constitutive laws. In particular, it focuses on an anisotropic model initially proposed for cerebral arteries to characterize the activation of collagen fibers at finite strains. In the current work, this constitutive model is implemented for the first time in the context of an FSI formulation. In this framework, we investigate the influence of the material model on the numerical results and, in the case of the anisotropic laws, the importance of the collagen fibers on the overall mechanical behavior of the tissue. With this aim, we compare our numerical results by analyzing fluid dynamic indicators, vessel wall displacement, Von Mises stress, and deformations of the collagen fibers. Specifically, for an anisotropic model with collagen fiber recruitment at finite strains, we highlight the progressive activation and deactivation processes of the fibrous component of the tissue throughout the wall thickness during the cardiac cycle. The inclusion of collagen recruitment is found to have a substantial impact on the intramural stress, which will in turn impact the biological response of the intramural cells. Hence, the methodology presented here will be particularly useful for studies of mechanobiological processes in the healthy and diseased vascular wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. We remark that the numerical solution of the FSI problem with the (\(\text {EXP}1\), \(\text {EXP2-FS}\)) model is numerically challenging since it requires a suitable tuning and setting of the numerical parameters and discretization in order to be efficient.

References

  1. Augsburger L (2008) Fluid Mechanics of Cerebral Aneurysms and Effects of Intracranial Stents on Cerebral Aneurysmal Flow. Ph.D. thesis, École Polytechinque Fédérale de Lausanne, Lausanne

  2. Baek H, Jayaraman M, Richardson P, Karniadakis G (2010) Flow instability and wall shear stress variation in intracranial aneurysms. J R Soc Interface 7:967–988

    Article  Google Scholar 

  3. Balzani D (2006) Polyconvex Anisotropic Energies and Modeling of Damage Applied to Arterial Walls. Ph.D. thesis, University of Duisburg-Essen, Essen

  4. Balzani D, Brinkhues S, Holzapfel G (2012) Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput Methods Appl Mech Eng 213–216:139–151

    Article  MathSciNet  Google Scholar 

  5. Balzani D, Neff P, Schröder J, Holzapfel G (2006) A polyconvex framewok for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43:6052–6070

    Article  MATH  Google Scholar 

  6. Balzani D, Schmidt T, Schriefl T, Holzapfel G (2013) Constitutive modeling of damage mechanisms in arterial walls and related experimental studies. In: XLI APM proceedings (advanced problems in mechanics), St. Petersburg, pp 17–25

  7. Bazilevs Y, Hsu M, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498

    Article  Google Scholar 

  8. Bazilevs Y, Hsu M, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16

    Article  MATH  MathSciNet  Google Scholar 

  9. Bhole A, Flynn BP, Liles M, Saeidi N, Dimarzio CA, Ruberti JW (2009) Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: implications for load-bearing matrix growth and stability. Philoso Trans Ser A Math Phys Eng Sci 367:3339–3362

    Article  Google Scholar 

  10. Brinkhues S, Klawonn A, Rheinbach O, Schröder J (2013) Augmented Lagrange methods for quasi-incompressible material–applications to soft biological tissue. Int J Numer Methods Biomed Eng 29:332–350

    Article  MathSciNet  Google Scholar 

  11. Burton A (1954) Relation of structure to function of the tissue of the wall of blood vessels. Physiol Rev 34:619–642

    Google Scholar 

  12. Calvo B, Pẽna E, Martinez M, Doblaré M (2007) An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects. Int J Numer Methods Eng 69:2036–2057

    Article  MATH  Google Scholar 

  13. Carew T, Vaishnav R, Patel D (1968) Compressibility of the arterial wall. Circ Res 23:61–68

    Article  Google Scholar 

  14. Castro M, Putman C, Cebral J (2006) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am J Neuroradiol 27:1703–1709

    Google Scholar 

  15. Cebral J, Castro M, Appanaboyina S, Putman C, Millan D, Frangi A (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: techniques and sensitivity. IEEE Trans Med Imaging 24:457–467

    Article  Google Scholar 

  16. Cebral J, Mut F, Weir F, Putman C (2011) Association of hemodynamics characteristics and cerebral aneurysms rupture. Am J Neuroradiol 32:264–270

    Article  Google Scholar 

  17. Chandra S, Raut S, Jana A, Biederman R, Doyle M, Muluk S, Finol E (2013) Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J Biomech Eng 135:810011–8100114

    Article  Google Scholar 

  18. Chen H, Zhu L, Hou Y, Liu Y, Kassab G (2010) Fluid-structure interaction (FSI) modeling in the cardiovascular system. In: Guccione J, Kassab G, Ratcliffe M (eds) Computational cardiovascular mechanics, modeling and applications in heart failure. Springer, New York, pp 141–157

    Chapter  Google Scholar 

  19. Chen J, Wang S, Ding G, Yang X, Li H (2009) The effect of aneurismal-wall mechanical properties on patient-specific hemodynamic simulations: two clinical reports. Acta Mech Sin 25:677–688

    Article  MATH  Google Scholar 

  20. Crosetto P (2011) Fluid-Structure Interaction Problems in Hemodynamics: Parallel Solvers, Preconditioners, and Applications. Ph.D. thesis, École Polytechinque Fédérale de Lausanne, Lausanne

  21. Crosetto P, Deparis S, Fourestey G, Quarteroni A (2011) Parallel algorithms for fluid-structure interaction problems in haemodynamics. SIAM J Sci Comput 33:1598–1622

    Article  MATH  MathSciNet  Google Scholar 

  22. Crosetto P, Reymond P, Deparis S, Kontaxakis D, Stergiopulos N, Quarteroni A (2011) Fluid structure interaction simulations of physiological blood flow in the aorta. Comput Fluids 43:46–57

    Article  MATH  MathSciNet  Google Scholar 

  23. Delfino A, Stergiopulos N, Moore J, Meister J (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30:777–786

    Article  Google Scholar 

  24. Devault K, Gremaud P, Novak V, Olufsen M, Vernières G, Zhao P (2008) Blood flow in the Circle of Willis: modeling and calibration. Multiscale Model Simulat 7:888–909

    Article  MATH  Google Scholar 

  25. Draney M, Herfkens R, Hughes T, Pelc N, Wedding K, Zarins C, Taylor C (2002) Quantification of vessel wall cyclic strain using cine phase contrast magnetic resonance imaging. Ann Biomed Eng 30:1033–1045

    Article  Google Scholar 

  26. Ferguson G (1972) Direct measurements of mean and pulsatile blood pressure at operation in human intracranial saccular aneurysms. J Neurosurg 36:560–563

    Article  Google Scholar 

  27. Fernández M, Moubachir M (2005) A Newton method using exact jacobians for solving fluid-structure coupling. Comput Struct 83:127–142

    Article  Google Scholar 

  28. Flory P (1961) Thermodynamical relations for high elastic materials. Transa Farad Soc 57:829–838

    Article  MathSciNet  Google Scholar 

  29. Ford M, Nikolov N, Milner J, Lownie S, Demont E, Kalata W, Loth F, Holdsworth D, Steinman D (2008) PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng 130:1–15

    Article  Google Scholar 

  30. Formaggia L, Quarteroni A, Veneziani AE (2009) Cardiovascular mathematics, modeling and simulation of the circulatory system. MS & A, Springer-Verlag, Berlin

    MATH  Google Scholar 

  31. Gambaruto A, João A (2012) Flow structures in cerebral aneurysms. Comput Fluids 65:56–65

    Article  MathSciNet  Google Scholar 

  32. Gasser T, Ogden R, Holzapfel G (2006) Hyperelastic modelling of arterial layers with distributed collagen fiber orientations. J R Soc Interface 3:15–35

    Article  Google Scholar 

  33. Gasser T, Schulze-Bauer C, Holzapfel G (2002) A three-dimensional finite element model for arterial clamping. J Biomech Eng 124:355–363

    Article  Google Scholar 

  34. Giller C, Bowman G, Dyer H, Mootz L, Krippner W (1993) Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery 32:737–741

    Article  Google Scholar 

  35. Gould RA, Chin K, Santisakultarm TP, Dropkin A, Richards JM, Schaffer CB, Butcher JT (2012) Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. Acta Biomater 8:1710–1719

    Article  Google Scholar 

  36. Gupta V, Grande-Allen KJ (2006) Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 72:375–383

    Article  Google Scholar 

  37. Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for nearly-incompressibility. Int J Solids Struct 40:2767–2791

    Article  MATH  MathSciNet  Google Scholar 

  38. den Heijer T, Skoog I, Oudkerk M, de Leeuw FE, de Groot J, Hofman A, Bretler M (2003) Association between blood pressure levels over time and brain atrophy in the elderly. Neurobiol Aging 24:307–313

    Article  Google Scholar 

  39. Hill M, Duan X, Gibson G, Watkins S, Robertson A (2012) A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the arterial wall. J Biomech 45:762–771

  40. Hoi Y, Woodward S, Kim M, Taulbee D, Meng H (2006) Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J Biomech Eng 128:844–851

    Article  Google Scholar 

  41. Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, London

    Google Scholar 

  42. Holzapfel G, Gasser T, Ogden R (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MATH  MathSciNet  Google Scholar 

  43. Holzapfel G, Odgen R (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A 367:3445–3475

    Article  MATH  Google Scholar 

  44. Holzapfel G, Ogden R (2010) Constitutive modeling of arteries. Proc R Soc Lond A 466:1551–1597

    Article  MATH  MathSciNet  Google Scholar 

  45. Humphrey J (2002) Cardiovascular solid mechanics. Cells, tissues, and organs. Springer-Verlag, New York

  46. Isaksen J, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen J, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172–3178

    Article  Google Scholar 

  47. Janela J, Moura A, Sequeira A (2010) Absorbing boundary conditions for a 3D non-Newtonian fluidstructure interaction model for blood flow in arteries. Int J Eng Sci 48:1332–1349

    Article  MATH  MathSciNet  Google Scholar 

  48. Jeong W, Rhee K (2012) Hemodynamics of cerebral aneurysms: computational analyses of aneurysm progress and treatment. Comput Math Methods Med 2012:1–11

    Article  Google Scholar 

  49. Kim C, Kiris C, Kwak D, David T (2006) Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity. J Biomech Eng 128:194–202

    Article  Google Scholar 

  50. Li D, Robertson A (2009) A structural multi-mechanism constitutive equation for cerebral arterial tissue. Int J Solids Struct 46:2920–2928

    Article  MATH  Google Scholar 

  51. Li D, Robertson A (2009) A structural multi-mechanism damage model for cerebral arterial tissue. J Biomech Eng 131:101013–101018

    Article  Google Scholar 

  52. Li D, Robertson A, Lin G, Lovell M (2012) Finite element modeling of cerebral angioplasty using a structural multi-mechanism anisotropic damage model. Int J Numer Methods Eng 92:457–474

    Article  MathSciNet  Google Scholar 

  53. Lou J, Lee D, Morsi H, Mawad M (2008) Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. Am J Neuroradiol 29:1761–1767

    Article  Google Scholar 

  54. Malossi A (2012) Partitioned Solution of Geometrical Multiscale Problems for the Cardiovascular System: Models, Algorithms, and Applications. Ph.D. thesis, École Polytechinque Fédérale de Lausanne, Lausanne

  55. Malossi A, Bonnemain J (2013) Numerical comparison and calibration of geometrical multiscale models for the simulation of arterial flows. Cardiovasc Eng Tecnol 4:440–463

    Article  Google Scholar 

  56. Mantha A, Karmonik C, Bendorf G, Strother C, Metcalfe R (2006) Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am J Neuroradiol 27:1113–1118

    Google Scholar 

  57. Marks M, Pelc N, Ross M, Enzmann D (1992) Determination of cerebral blood flow with a phase contrast cine MR imaging technique: evaluation of normal subjects and patients with an arteriovenous malformations. Radiology 182:467–476

    Article  Google Scholar 

  58. Marzo A, Singh P, Reymond P, Stergiopulos N, Patel U, Hose R (2009) Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms. Comput Methods Biomech Biomed Eng 12:431–444

    Article  Google Scholar 

  59. Moireau P, Xiao N, Astorino M, Figueroa C, Chapelle D, Taylor C, Gerbeau J (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11:1–18

    Article  Google Scholar 

  60. Nichols W, O’Rourke M (1998) McDonald’s blood flow in arteries: theoretical, experimental, and clinical principles. Arnold, London

    Google Scholar 

  61. Nobile F (2001) Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics. Ph.D. thesis, École Polytechinque Fédérale de Lausanne, Lausanne

  62. Oshima M, Sakai H, Torii R (2005) Modelling of inflow boundary conditions for image-based simulation of cerebrovascular flow. Int J Numer Methods Fluids 47:603–617

    Article  MATH  MathSciNet  Google Scholar 

  63. Quarteroni A, Sacco R, Saleri F (2007) Numerical mathematics. Springer, Berlin

    MATH  Google Scholar 

  64. Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Oxford University Press, Oxford

    MATH  Google Scholar 

  65. Quarteroni A, Valli A (1999) Numerical approximation of partial differential equations. Springer-Verlag, Berlin

    Google Scholar 

  66. Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N (2010) Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol 301:1173–1182

    Google Scholar 

  67. Roach M, Burton A (1957) The reason for the shape of the distensibility curves of arteries. Can J Biochem 35:681–690

    Article  Google Scholar 

  68. Robertson A, Sequeira A, Kameneva M (2008) Hemorheology. In: Galdi G, Rannacher R, Robertson A, Turek S (eds) Hemodynamical flows, oberwolfach seminars, vol 37. Springer-Verlag, Basel, pp 63–120

    Chapter  Google Scholar 

  69. Robertson A, Watton P (2013) Mechanobiology of the arterial wall. In: Becker S, Kuznetsov A (eds) Modeling of transport in biological media. Elsevier, New York, pp 275–347

    Chapter  Google Scholar 

  70. Roy S, Boss C, Rezakhaniha R, Stergiopulos N (2010) Experimental characterization of the distribution of collagen fiber recruitment. J Biorheol 24:84–93

    Article  Google Scholar 

  71. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  72. Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40:401–445

    Article  MATH  Google Scholar 

  73. Scott S, Ferguson G, Roach M (1972) Comparison of the elastic properties of human intracranial arteries and aneurysms. Can J Physiol Pharmacol 50:328–332

    Article  Google Scholar 

  74. Sforza D, Putman C, Cebral J (2009) Hemodynamics of cerebral aneurysms. Annu Rev Fluid Mech 41:91–107

    Article  Google Scholar 

  75. Spencer A (1984) Constitutive theory of strongly anisotropic solids. In: Spencer A (ed) Continuum theory of the mechanics of fibre-reinforced composites. Springer-Verlag, Wien, pp 1–32

  76. Takizawa K, Bazilevs Y, Tezduyar T, Long C, Marsden A, Schjodt K (2014) Patient-specific cardiovascular fluid mechanics analysis with the ST and ALE-VMS methods. In: Idelsohn S (ed) Numer Simulat Coupled Probl Eng, vol 33. Springer, Heidelberg, pp 71–102

    Chapter  Google Scholar 

  77. Takizawa K, Bazilevs Y, Tezduyar T (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19:171–225

    Article  MathSciNet  Google Scholar 

  78. Takizawa K, Takagi H, Tezduyar T, Torii R (2014) Estimation of element-based zero-stress state for arterial FSI computations. Comput Mech 54:895–910

    Article  MATH  MathSciNet  Google Scholar 

  79. Tezduyar T, Takizawa K, Brummer T, Chen P (2013) Spacetime fluidstructure interaction modeling of patient-specific cerebral aneurysms. Numer Methods Biomed Eng 27:1665–1710

    Article  MathSciNet  Google Scholar 

  80. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar T (2006) Fluid-structure interaction modeling of anuerysmal conditions with high and normal blood pressures. Comput Mech 38:482–490

    Article  MATH  Google Scholar 

  81. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar T (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm–dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54:995–1009

    Article  MATH  MathSciNet  Google Scholar 

  82. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar T (2008) Fluidstructure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43:151–159

    Article  MATH  Google Scholar 

  83. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar T (2009) Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Method Appl Mech Eng 198:3613–3621

    Article  MATH  MathSciNet  Google Scholar 

  84. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar T (2010) Influence of wall thickness on fluid-structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26:336–347

    Article  MATH  MathSciNet  Google Scholar 

  85. Tricerri P, Dedè L, Quarteroni A, Sequeira A (2013) Numerical validation of isotropic and transversely isotropic constitutive models for healthy and unhealthy cerebral arterial tissue. Technical Report 39.2013, MATHICSE Report EPFL

  86. Valencia A, Burdiles P, Ignat M, Mura J, Bravo E, Rivera R, Sordo J (2013) Fluid structural analysis of human cerebral aneurysm using their own wall mechanical properties. Comput Math Methods Med http://www.hindawi.com/journalscmmm/2013/293128/

  87. Valencia A, Solis F (2006) Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Comput Struct 84:1326–1337

    Article  Google Scholar 

  88. Weisbecker H, Pierce D, Holzapfel G (2011) Modeling of damage-induced softening for arterial tissue. In: Proceedings of the 2011 SCATh joint workshop on new tecnologies for computer/robot assisted surgery, Graz, pp 1–4

  89. Wulandana R, Robertson A (2005) An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech Model Mechanobiol 4:235–248

    Article  Google Scholar 

  90. Zakaria H, Robertson A, Kerber C (2008) A parametric model for studies of flow in arterial bifurcations. Ann Biomed Eng 36:1515–1530

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Swiss National Supercomputing Centre (CSCS) under the project ID s475 for providing the computational resources for the numerical simulations. P. Tricerri acknowledges the financial support of Fundação para Ciênca e a Tecnologia (FCT) of Portugal through the Research Center CEMAT-IST (under the grant SFRH/BD/51069/2010) and of the project EXCL/MAT-NAN/0114/2012. Prof. Quarteroni acknowledges the MATHCARD and the HP2C projects; Dr. Deparis thanks the HP2C project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Tricerri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tricerri, P., Dedè, L., Deparis, S. et al. Fluid-structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws. Comput Mech 55, 479–498 (2015). https://doi.org/10.1007/s00466-014-1117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1117-y

Keywords

Navigation