Skip to main content
Log in

Energy-consistent time integration for nonlinear viscoelasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with the numerical solution of the evolution equations of thermomechanical systems, in such a way that the scheme itself satisfies the laws of thermodynamics. Within this framework, we present a novel integration scheme for the dynamics of viscoelastic continuum bodies in isothermal conditions. This method intrinsically satisfies the laws of thermodynamics arising from the continuum, as well as the possible additional symmetries. The resulting solutions are physically accurate since they preserve the fundamental physical properties of the model. Furthermore, the method gives an excellent performance with respect to robustness and stability. Proof for these claims as well as numerical examples that illustrate the performance of the novel scheme are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hairer E, Lubich C, Wanner G (2003) Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. Springer series in computational mathematics. Springer, Berlin

    Google Scholar 

  2. Leimkuhler B, Reich S (2005) Simulating Hamiltonian dynamics. Cambridge monographs on applied and computational mathematics. Cambridge University Press. http://books.google.es/books?id=tpb-tnsZi5YC

  3. Simó JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys (ZAMP) 43(5):757–792

    Article  MATH  Google Scholar 

  4. Gónzalez O (1996) Design and analysis of conserving integrators for nonlinear Hamiltonian systems with symmetry. Ph.D. thesis, Stanford

  5. Gotusso L (1985) On the energy theorem for the Lagrange equations in the discrete case. Appl Math Comput 17(2):129–136

    Google Scholar 

  6. Itoh, T., Abe, K.: Hamiltonian-conserving discrete canonical equations based on variational difference quotients. J Comput Phys 76(1):85–102 (1988). doi: 10.1016/0021-9991(88)90132-5. http://www.sciencedirect.com/science/article/pii/0021999188901325

    Google Scholar 

  7. McLachlan RI, Quispel GRW, Robidoux N (1999) Geometric integration using discrete gradients. Philos Trans Math Phys Eng Sci 357(1754):1021–1045

    Article  MathSciNet  MATH  Google Scholar 

  8. Stuart A, Humphries AR (1998) Dynamical systems and numerical analysis. No. v. 8 in Cambridge monographs on applied and computational mathematics. Cambridge University Press. http://books.google.es/books?id=ymoQA8s5pNIC

  9. Ortiz M, Repetto EA, Stainier L (2000) A theory of subgrain dislocation structures. 48. doi:10.1016/S0022-5096(99)00104-0. http://linkinghub.elsevier.com/retrieve/pii/S0022509699001040

  10. Groß M, Betsch P (2010) Energy-momentum consistent finite element discretization of dynamic finite viscoelasticity. Int J Numer Methods Eng 81(September 2009):1341–1386. doi:10.1002/nme

    MATH  Google Scholar 

  11. Meng X (2002) On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators. Finite Elem Anal Des 38(10):949–963. doi:10.1016/S0168-874X(02)00087-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Meng XN, Laursen TA (2002) Energy consistent algorithms for dynamic finite deformation plasticity. Comput Methods Appl Mech Eng 191(15–16):1639–1675 (2002). doi:10.1016/S0045-7825(01)00349-8. http://linkinghub.elsevier.com/retrieve/pii/S0045782501003498

  13. Armero F, Zambrana-Rojas C (2007) Volume-preserving energy momentum schemes for isochoric multiplicative plasticity. Comput Methods Appl Mech Eng 196(41–44):4130–4159. doi:10.1016/j.cma.2007.04.002

    Article  MathSciNet  MATH  Google Scholar 

  14. Öttinger (2005) Beyond equilibrium thermodynamics. Wiley, New Jersey

    Book  Google Scholar 

  15. Romero I (2009) Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Int J Numer Methods Eng 79:706–732. doi:10.1002/nme

    Article  MATH  Google Scholar 

  16. Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamicsPart II: fractional step methods. Comput Methods Appl Mech Eng 199(33–36):2235–2248. doi:10.1016/j.cma.2010.03.016

    Article  MATH  Google Scholar 

  17. Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics. Part I: monolithic integrators and their application to finite strain thermoelasticity. Comput Methods Appl Mech Eng 199(25–28):1841–1858. doi:10.1016/j.cma.2010.02.014

    Article  MATH  Google Scholar 

  18. García Orden JC, Romero I (2011) Energy-Entropy-Momentum integration of discrete thermo-visco-elastic dynamics. Eur J Mech A/Solids 32:76–87. doi:10.1016/j.euromechsol.2011.09.007. http://linkinghub.elsevier.com/retrieve/pii/S0997753811001392

  19. Krüger M, Groß M, Betsch P (2011) A comparison of structure-preserving integrators for discrete thermoelastic systems. Comput Mech 47(6):701–722. doi:10.1007/s00466-011-0570-0

    Google Scholar 

  20. Coleman B, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47(2):597. doi:10.1063/1.1711937

    Google Scholar 

  21. Bonet J (2001) Large strain viscoelastic constitutive models. Int J Solids Struct 38(17):2953–2968. doi:10.1016/S0020-7683(00)00215-8

    Article  MATH  Google Scholar 

  22. Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(97):3455–3482

    Google Scholar 

  23. Holzapfel GA, Simó JC (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33(20):3019–3034

    Article  MATH  Google Scholar 

  24. Truesdell C, Noll W, Antman SS (2004) The non-linear field theories of mechanics. No. v. 3 in the non-linear field theories of mechanics. Springer. http://books.google.es/books?id=dp84F_odrBQC

  25. Govindjee S, Simó JC (1992) Mullins’ effect and the strain amplitude dependence of the storage modulus. Solids Struct 29:1737–1751

    Article  MATH  Google Scholar 

  26. Bonet J, Wood Richard D (2008) Nonlinear continuum mechanics for finite element analysis. University Press, Cambrigde, Swasea

    Book  MATH  Google Scholar 

  27. Malvern L (1969) Introduction to the mechanics of a continuous medium. Incorporated, Prentice-Hall International, Englewood Cliffs, NJ

    Google Scholar 

  28. Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications 190:4379–4403

  29. Holzapfel GA (2000) Nonlinear solid mechanics—a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  30. Hutter K (1977) The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics. Acta Mech 27(1):1–54. doi:10.1007/BF01180075. http://dx.doi.org/10.1007/BF01180075

  31. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis, vol 682. Dover Publications. http://books.google.com/books?id=yarmSc7ULRsC

  32. Romero I (2012) An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics. Comput Mech 50(5):603–610. doi:10.1007/s00466-012-0693-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Holzapfel GA (1996) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Numer Methods Eng 39(December 1995):3903–3926

    Article  MATH  Google Scholar 

  34. Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292. doi:10.1002/eqe.4290050306

    Article  Google Scholar 

  35. Süli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge, MA

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Education Ministry of Spain under Project No. DPI 2012-36429. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Conde Martín.

Appendix: Time-discrete constitutive laws

Appendix: Time-discrete constitutive laws

The key factor in the proposed consistent method is the use of the discrete derivative operator for the time-approximation of the constitutive laws given by (6). As we have previously mentioned, such operator has a different elaboration depending on the number of internal variables. This fact somehow makes the method slightly different according to this election. For simplicity, we have implemented the consistent method with only one internal variable and, accordingly, we present here the elaborated expressions for the time-discrete approximation of the constitutive laws given by (38) for \(\alpha =1\). These expressions should be programmed in order to implement the consistent method in any FE-based software. Taking from [4], the expression for the discrete derivative operator in a partitioned case, we have

$$\begin{aligned}&\tilde{{\mathsf {S}}} = \overline{{\mathsf {S}}}_{n+\frac{1}{2}}^h + \frac{\varDelta \varPsi _{n+1} + \varDelta \varPsi _n - \overline{{\mathsf {S}}}^h_{n+\frac{1}{2}} :\varDelta {\mathsf {C}}^h}{\varDelta {\mathsf {C}}^h:\varDelta {\mathsf {C}}^h}\varDelta {\mathsf {C}}^h,\end{aligned}$$
(57)
$$\begin{aligned}&\tilde{{\mathsf {Q}}} = \overline{{\mathsf {Q}}}^h_{n+\frac{1}{2}} - \frac{\frac{1}{2}\left[ \varDelta \varPsi ^{n+1} + \varDelta \varPsi ^n\right] + \overline{{\mathsf {Q}}}^h_{n+\frac{1}{2}}: \varDelta {\mathsf {\Gamma }}^h}{\varDelta {\mathsf {\Gamma }}^h:\varDelta {\mathsf {\Gamma }}^h}\varDelta {\mathsf {\Gamma }}^h,\nonumber \\ \end{aligned}$$
(58)

where we have introduced the following simplified notation

$$\begin{aligned}&\varDelta \varPsi _i = \varPsi \left( {\mathsf {C}}^h_{n+1},{\mathsf {\Gamma }}^h_i\right) - \varPsi \left( {\mathsf {C}}^h_{n}, {\mathsf {\Gamma }}^h_i\right) \end{aligned}$$
(59)
$$\begin{aligned}&\varDelta \varPsi ^i = \varPsi \left( {\mathsf {C}}^h_i,{\mathsf {\Gamma }}^{\scriptstyle {h}}_{n+1}\right) - \varPsi \left( {\mathsf {C}}^h_i,{\mathsf {\Gamma }}^{\scriptstyle {h}}_n\right) \end{aligned}$$
(60)
$$\begin{aligned}&\overline{{\mathsf {S}}}^h_{n+\frac{1}{2}} =\frac{1}{2}\left[ {\mathsf {S}}_{n+1}^{n+ \frac{1}{2}} + {\mathsf {S}}_n^{n+\frac{1}{2}}\right] \hbox { with } {\mathsf {S}}_i^j \!= \!\left. 2\frac{\partial \!\varPsi ({\mathsf {C}}^h, {\mathsf {\!}}{\Gamma }^h_i)}{\partial {\mathsf {C}}^h}\right| _j\nonumber \\\end{aligned}$$
(61)
$$\begin{aligned}&\overline{{\mathsf {Q}}}^h_{n+\frac{1}{2}} \!=\! \frac{1}{2}\left[ {\mathsf {Q}}^{n+1}_{n+\frac{1}{2}} \!+\! {\mathsf {Q}}^n_{n\!+\!\frac{1}{2}}\right] \hbox { with }{\mathsf {Q}}_i^j\!=\!\left. -\frac{\partial \varPsi ({\mathsf {C}}^h_j, {\mathsf {\Gamma }}^h)}{\partial {\mathsf {\Gamma }}^{h}}\right| _i\nonumber \\ \end{aligned}$$
(62)

As with the case of the Energy-Momentum method for nonlinear elasticity, the inclusion of the above expressions in the FE-implementation leads to an increment of the computational cost (with respect to classical methods) and to non-symmetric tangent matrices.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde Martín, S., García Orden, J.C. & Romero, I. Energy-consistent time integration for nonlinear viscoelasticity. Comput Mech 54, 473–488 (2014). https://doi.org/10.1007/s00466-014-1000-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1000-x

Keywords

Navigation