Skip to main content
Log in

Time-domain BEM for 3-D transient elastodynamic problems with interacting rigid movable disc-shaped inclusions

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Formulation of time-domain boundary element method for elastodynamic analysis of interaction between rigid massive disc-shaped inclusions subjected to impinging elastic waves is presented. Boundary integral equations (BIEs) with time-retarded kernels are obtained by using the integral representations of displacements in a matrix in terms of interfacial stress jumps across the inhomogeneities and satisfaction of linearity conditions at the inclusion domains. The equations of motion for each inclusion complete the problem formulation. The time-stepping/collocation scheme is implemented for the discretization of the BIEs by taking into account the traveling nature of the generated wave field and local structure of the solution at the inclusion edges. Numerical results concern normal incidence of longitudinal wave onto two coplanar circular inclusions. The inertial effects are revealed by the time dependencies of inclusions’ kinematic parameters and dynamic stress intensity factors in the inclusion vicinities for different mass ratios and distances between the interacting obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lee KJ, Paul DR (2005) A model for composites containing three-dimensional ellipsoidal inclusions. Polymer 21:9064–9080

    Article  Google Scholar 

  2. Selvadurai APS (2007) The analytical method in geomechanics. Appl Mech Rev 60:87–106

    Article  Google Scholar 

  3. Fritsch A, Hellmich Ch, Dormieux L (2010) The role of disc-type crystal shape for micromechanical predictions of elasticity and strength of hydroxyapatite biomaterials. Philos Trans R Soc Ser A 368:1913–1935

    Article  Google Scholar 

  4. Martin PA (2006) Multiple scattering: interaction of time-harmonic waves with N obstacles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Manolis GD, Beskos DE (1988) Boundary element methods in elastodynamics. Unwin Hyman, London

    Google Scholar 

  6. Beskos DE (1997) Boundary element methods in dynamic analysis, Part II (1986–1996). Appl Mech Rev 50:149–197

    Article  Google Scholar 

  7. Dominguez J (1993) Boundary elements in dynamics. Elsevier, Southampton

    MATH  Google Scholar 

  8. Zhang Ch, Gross D (1998) On wave propagation in elastic solids with cracks. Computational Mechanics Publications, Southampton

    MATH  Google Scholar 

  9. Aliabadi MH (2002) The boundary element method: applications in solids and structures, vol 2. Wiley, New York

    Google Scholar 

  10. Schanz M, Ruberg T, Keilhorn L (2009) Time domain BEM: numerical aspects of collocation and Galerkin formulations. In: Manolis GD, Polizos D (eds) Recent advances in boundary element methods. Springer, Heidelberg, pp 415–432

    Chapter  Google Scholar 

  11. Kausel E (2006) Fundamental solutions in elastodynamics. Cambridge University Prerss, Cambridge

    Book  MATH  Google Scholar 

  12. Hirose S (1991) Boundary integral equation method for transient analysis of 3-D cavities and inclusions. Eng Anal Bound Elem 8:146–154

    Article  Google Scholar 

  13. Bonnet M (2006) Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain. Comput Method Appl Mech Eng 195:5239–5254

    Article  MATH  MathSciNet  Google Scholar 

  14. Rizos DC (2000) A rigid surface boundary element for soil-structure interaction analysis in the direct time domain. Comput Mech 26:582–591

    Article  MATH  Google Scholar 

  15. Karabalis D (2004) Non-singular time domain BEM with application to 3D inertial soil-structure interaction. Soil Dyn Earthq Eng 24:281–293

    Article  Google Scholar 

  16. Romero A, Galvin P, Dominguez J (2013) 3D non-linear time-domain FEM-BEM approach to soil-structure interaction problems. Eng Anal Bound Elem 37:501–512

    Article  MathSciNet  Google Scholar 

  17. Sohrabi-Bidar A, Kamalian M, Jafari MK (2009) Time-domain BEM for three-dimensional site response analysis of topographic structures. Int J Numer Method Eng 79:1467–1492

    Article  MATH  Google Scholar 

  18. Saitoh T, Zhang Ch, Hirose S (2010) Large-scale multiple scattering analysis using fast multipole BEM in time-domain. AIP Conf Proc 1233:1196–1201

    Article  Google Scholar 

  19. Saitoh T, Hirose S (2010) Parallelized fast multipole BEM based on the convolution quadrature method for 3-D wave propagation problems in time-domain. Mater Sci Eng 10:012242

    Google Scholar 

  20. Zhang Ch, Savaidis A (2003) 3-D transient dynamic crack analysis by a novel time-domain BEM. Comput Model Eng Sci 4:603–618

    MATH  MathSciNet  Google Scholar 

  21. Marrero M, Dominguez J (2004) Time-domain BEM for three-dimensional fracture mechanics. Eng Fract Mech 71:1557–1575

    Article  Google Scholar 

  22. Wen PH, Aliabadi MH, Young A (1999) A time-dependent formulation of dual boundary element method for 3D dynamic crack problems. Int J Numer Meth Eng 45:1887–1905

    Article  MATH  Google Scholar 

  23. Takahashi T, Nishimura N, Kobayashi S (2004) A fast BIEM for three-dimensional elastodynamics in time-domain. Eng Anal Bound Elem 28:165–180

    Article  MATH  Google Scholar 

  24. Wen PH, Aliabadi MH, Rooke DP (1998) Cracks in three dimensions: a dynamic dual boundary element analysis. Comp Method Appl Mech Eng 167:139–151

    Article  MATH  Google Scholar 

  25. Sladek J, Sladek V, Mykhas’kiv VV, Stankevych VZ (2003) Application of mapping theory to boundary integral formulation of 3D dynamic crack problems. EABE - Eng Anal Bound Elem 27:203–213

    Article  MATH  Google Scholar 

  26. Xiao ZM, Luo J (2003) Three-dimensional dynamic stress analysis on a penny-shaped crack interacting with a suddenly transformed spherical inclusion. Int J Fract 123:29–47

    Article  Google Scholar 

  27. Xiao ZM, Luo J (2004) On the dynamic interaction between a penny-shaped crack and an expanding spherical inclusion in 3-D solid. Eng Fract Mech 71:1635–1649

    Article  Google Scholar 

  28. Chen B, Gross D (1997) Two parallel penny-shaped cracks under the action of dynamic impacts. Arch Appl Mech 67:555–565

    Article  MATH  Google Scholar 

  29. Mykhas’kiv VV (2001) Opening-function simulation of the three-dimensional nonstationary interaction of cracks in an elastic body. Int Appl Mech 37:75–84

    Article  Google Scholar 

  30. Dhaliwal RS, Singh BM, Vrbik J, Selvadurai APS (1984) Diffraction of torsional wave or plane harmonic compressional wave by an annular rigid disc. Soil Dyn Earthq Eng 3:150–156

    Google Scholar 

  31. Mykhas’kiv VV, Khay OM (2009) Interaction between rigid-disc inclusion and penny-shaped crack under elastic time-harmonic wave incidence. Int J Solids Struct 46:602–616

    Article  MATH  Google Scholar 

  32. Martin PA, Llewellyn Smith SG (2011) Generation of internal gravity waves by an oscillating horizontal disc. Proc R Soc London Ser A 467:3406–3423

    Article  MATH  MathSciNet  Google Scholar 

  33. Hirose S, Achenbach JD (1988) Bem method to analyze the interaction of an acoustic pulse with a rigid circular disk. Wave Motion 10:267–275

    Google Scholar 

  34. Mykhas’kiv VV (2005) Transient response of a plane rigid inclusion to an incident wave in an elastic solid. Wave Motion 41:133–144

    Article  MATH  MathSciNet  Google Scholar 

  35. Mykhas’kiv VV, Kalynyak OI, Hrylytskyi MD (2013) Nonstationary problem of incidence of an elastic wave on a compliant inclusion in the form of an elliptic disk. J Math Sci 190:764–774

    Article  Google Scholar 

  36. Khai MV, Stepanyuk AI (1993) Interactions in an infinite medium of planar cracks with completely rigid planar inclusions. J Soviet Math 65:1776–1781

    Article  Google Scholar 

  37. Martin PA (2006) Exact solution of some integral equations over a circular disc. J Integ Equat Appl 18:39–58

    Article  MATH  Google Scholar 

  38. Khai MV (1993) Two-dimensional integral equations of Newtonian potential type and their applications. Naukova Dumka, Kyiv (in Russian)

  39. Kassir MK, Sih GS (1968) Some three-dimensional inclusion problems in elasticity. Int J Solids Struct 4:225–241

    Article  MATH  Google Scholar 

  40. Wang CY, Achenbach JD (1994) Elastodynamic fundamental solutions for anisotropic solids. Geoph J Int 118:384–392

    Article  Google Scholar 

  41. Wang CY, Zhang Ch (2005) 3-D and 2-D dynamic Green functions and time-domain BIEs for piezoelectric solids. Eng Anal Bound Elem 29:454–465

    Article  MATH  Google Scholar 

  42. Garcia-Sanchez F, Zhang Ch (2007) A comparative study of three BEM for transient dynamic crack analysis of 2-D anisotropic solids. Comput Mech 40:753–769

    Article  MATH  Google Scholar 

  43. Wunsche M, Garcia-Sanchez F, Saez A, Zhang Ch (2010) A 2D time-domain collocation-Galerkin BEM for dynamic crack analysis in piezoelectric solids. Eng Anal Bound Elem 34:377–387

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research was partially supported by the Scientific and Technology Center in Ukraine (STCU) and National Academy of Sciences of Ukraine (Project No. 5726), the work of V. V. Mykhas’kiv was supported by the Fulbright Foundation within Scholar Visiting Program 2012–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Mykhas’kiv.

Appendices

Appendix 1: Analytical values of retarded-type operator acting on linear shape function

Evaluation of operator \(\mathbf{B}_1^R \) involved in Eq. (26) with the shape function (27) gives

$$\begin{aligned} \left. {\mathbf{B}_1^R \left[ {{\upvartheta }_l (t)} \right] } \right| _{t=t_r =r\Delta t} =B_1^{r-l+1} +B_2^{r-l} , \end{aligned}$$
(31)

where after the temporal integration different expressions take place for the coefficients \(B_1^H \) and \(B_2^H (H=r-l+1, r-l)\) depending on the distance \(R\). With the denotation \(E=H-\)1 they are:

  • Case I: \(R<Ec_2 \Delta t\) or \(R>Hc_1 \Delta t\), then

    $$\begin{aligned} B_1^H =B_2^H =0; \end{aligned}$$
    (32)
  • Case II: \(Ec_2 \Delta t<R<Hc_2 \Delta t\) and \(R<Ec_1 \Delta t\), then

    $$\begin{aligned} B_1^H&= \frac{1}{2}H-\frac{2}{3}\frac{R}{\Delta tc_2 }+\frac{1}{2}\frac{(\Delta t)^{2}c_2^2}{R^{2}}E^{2}\left( {1+\frac{1}{3}E} \right) , \nonumber \\ B_2^H&= -\frac{1}{2}E+\frac{2}{3}\frac{R}{\Delta tc_2 }-\frac{1}{6}\frac{(\Delta t)^{2}c_2^2}{R^{2}}E^{3}; \end{aligned}$$
    (33)
  • Case III: \(Ec_1 \Delta t<R<Hc_2 \Delta t\), then

    $$\begin{aligned} B_1^H&= \frac{1}{2}H-\frac{2}{3}\frac{R}{\Delta tc_2 }+\frac{1}{2}{\upgamma }^{2}\left( {H-\frac{2}{3}\frac{R}{\Delta tc_1}} \right) , \nonumber \\ B_2^H&= -\frac{1}{2}E+\frac{2}{3}\frac{R}{\Delta tc_2 }-\frac{1}{2}{\upgamma }^{2}\left( {E-\frac{2}{3}\frac{R}{\Delta tc_1}} \right) ; \end{aligned}$$
    (34)
  • Case IV: \(Ec_1 \Delta t<R<Hc_1 \Delta t\) and \(R>Hc_2 \Delta t\), then

    $$\begin{aligned} B_1^H&= -\frac{1}{2}{\upgamma }^{2}\left( {H-\frac{2}{3}\frac{R}{\Delta tc_1}} \right) -\frac{1}{6}H^{3}\frac{(\Delta t)^{2}c_2^2}{R^{2}}, \nonumber \\ B_2^H&= -\frac{1}{2}{\upgamma }^{2}\left( {E-\frac{2}{3}\frac{R}{\Delta tc_1}} \right) \nonumber \\&-\frac{1}{2}\frac{(\Delta t)^{2}c_2^2}{R^{2}}H^{2}\left( {1-\frac{1}{3}H} \right) ; \end{aligned}$$
    (35)
  • Case V: \(Hc_2 \Delta t<R<Ec_1 \Delta t\), then

    $$\begin{aligned} B_1^H&= -\frac{1}{6}\frac{(\Delta t)^{2}c_2^2}{R^{2}}\left( {3E+1} \right) , \nonumber \\ B_2^H&= -\frac{1}{6}\frac{(\Delta t)^{2}c_2^2}{R^{2}}\left( {E+2H} \right) . \end{aligned}$$
    (36)

Appendix 2: Coefficients of resulting system of linear algebraic equations for piecewise-constant spatial approximation

From Eqs. (26) and (27) it follows

$$\begin{aligned}&c_i^{(n)} =\int \int \limits _{\tilde{S}_{ni}} {\sin {\upeta }_1^{(n)} dS_{\upeta }},\nonumber \\&c_{ji}^{(n)} =\int \int \limits _{\tilde{S}_{ni}} {\sin ^{2}{\upeta }_1^{(n)} ({\updelta }_{1j} \hbox {sin}{\upeta }_2^{(n)} -{\updelta }_{2j} \hbox {cos}{\upeta }_2^{(n)} )dS_{\upeta }} , \nonumber \\&\tilde{S}_{ni} :\left\{ { {\uppi }(m-1)L_n}/{\left( {2Q_n} \right) }\le {\upeta }_1^{(n)} \le { {\uppi }mL_n}/{\left( {2Q_n} \right) }; \right. \nonumber \\&\quad \left. { 2{\uppi }(l-1)}/{L_n}\le {\upeta }_2^{(n)} \le {2{\uppi }l}/{L_n} \right\} , \nonumber \\&\quad m=1,2,\ldots , {Q_n}/{L_n}; \qquad n=1,2,\ldots ,L_n ; \nonumber \\&\quad i=(m-1)L_n +l. \end{aligned}$$
(37)

After integration we obtain

$$\begin{aligned} c_i^{(n)} \!&= \!\frac{2{\uppi }}{L_n}\left\{ {\cos \left[ {{ {\uppi }(m-1)L_n }/{\left( {2Q_n} \right) }} \right] \!-\!\cos \left[ {{ {\uppi }mL_n }/{\left( {2Q_n} \right) }} \right] } \right\} , \nonumber \\ c_{ji}^{(n)}&= \frac{1}{4}{\updelta }_{1j} \left\{ \cos \left[ {{ 2{\uppi }(l-1)}/{L_n}} \right] \right. \nonumber \\&\left. -\cos \left[ {{ 2{\uppi }l}/{L_n}} \right] \right\} \left\{ \sin \left[ {{ {\uppi }(m-1)L_n}/{Q_n}} \right] \right. \nonumber \\&\left. -\sin \left[ {{ {\uppi }mL_n}/{Q_n}} \right] +{ {\uppi }L_n}/{Q_n} \right\} \nonumber \\&+\frac{1}{4}{\updelta }_{2j} \left\{ \sin \left[ {{ 2{\uppi }(l-1)}/{L_n }} \right] \right. \nonumber \\&\left. -\sin \left[ {{ 2{\uppi }l}/{L_n}} \right] \right\} \left\{ \sin \left[ {{ {\uppi }(m-1)L_n}/{Q_n}} \right] \right. \nonumber \\&\left. -\sin \left[ {{ {\uppi }mL_n}/{Q_n}} \right] +{ {\uppi }L_n}/{Q_n} \right\} . \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mykhas’kiv, V.V., Martin, P.A. & Kalynyak, O.I. Time-domain BEM for 3-D transient elastodynamic problems with interacting rigid movable disc-shaped inclusions. Comput Mech 53, 1311–1325 (2014). https://doi.org/10.1007/s00466-014-0975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-0975-7

Keywords

Navigation