Skip to main content
Log in

Local and global strategies for optimal selective mass scaling

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The problem of optimal selective mass scaling for linearized elasto-dynamics is discussed. Optimal selective mass scaling should provide solutions for dynamical problems that are close to the ones obtained with a lumped mass matrix, but at much smaller computational costs. It should be equally applicable to all structurally relevant load cases. The three main optimality criteria, namely eigenmode preservation, small number of non-zero entries and good conditioning of the mass matrix are explicitly formulated in the article. An example of optimal mass scaling which relies on redistribution of mass on a global system level is constructed. Alternative local mass scaling strategies are proposed and compared with existing methods using one modal and two transient numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Independently published and analyzed for linear and non-linear problems in [10].

  2. The Jacobi preconditioner contains on the diagonal the inverted values of \({\mathbf {{P}}}_{\mathrm {J},ii } = ({\mathbf {{M}}}_{ii})^{-1}\).

References

  1. Allemang RJ (2003) The modal assurance criterion—twenty years of use and abuse. Sound Vib 37(8):14–23

    Google Scholar 

  2. Askes H, Nguyen D, Tyas A (2011) Increasing the critical time step: micro-inertia, inertia penalties and mass scaling. Comput Mech 47:657–667. doi:10.1007/s00466-010-0568-z

    Article  MATH  Google Scholar 

  3. Cocchetti G, Pagani M, Perego U (2012) Selective mass scaling and critical time-step estimate for explicit dynamics analyses with solid-shell elements. Comput Struct 127:39–52. doi:10.1016/j.compstruc.2012.10.021

    Google Scholar 

  4. Eck C, Kovalenko Y, Mangold O, Prohl R, Tkachuk A, Trickov V (2014) Reduction of numerical sensitivities in crash simulations on HPC-computers (HPC-10). In: Nagel WE, Kröner DH, Resch MM (eds) High performance computing in science and engineering ’13. Springer, Berlin, pp 679–697. doi:10.1007/978-3-319-02165-2_48

  5. Engblom J, Chang C (1991) Nonlinear dynamical response of impulsively loaded structures—a reduced basis approach. AIAA Journal 29(4):613–618. doi:10.2514/3.10629

    Article  Google Scholar 

  6. Gantmacher F (1959) The theory of matrices. Chelsea, New York

  7. Gavoille S (2013) Enrichissement modal du selective mass scaling (in French). In Proceedings of 11e Colloque National en Calcul des Structures by Calcul des Structures et Modélisation (CSMA 2013)

  8. Hughes T, Hilber H, Taylor R (1976) A reduction scheme for problems of structural dynamics. Int J Solids Struct 12(11):749–767. doi:10.1016/0020-7683(76)90040-8

    Article  MATH  Google Scholar 

  9. Lawther R (2005) On the straightness of eigenvalue interactions. Comput Mech. doi:10.1007/s00466-005-0675-4

  10. Macek RW, Aubert BH (1995) A mass penalty technique to control the critical time increment in explicit dynamic finite element analyses. Earthq Eng Struct Dyn 24(10):1315–1331. doi:10.1002/eqe.4290241003

    Article  Google Scholar 

  11. Naumov M (2011) On the modification of an eigenvalue problem that preserves an eigenspace. J Comput Appl Math 235(18):5432–5440. doi:10.1016/j.cam.2011.06.003

    Article  MATH  MathSciNet  Google Scholar 

  12. Olovsson L, Simonsson K (2006) Iterative solution technique in selective mass scaling. Comm Num Methods Eng 22(1):77–82. doi:10.1002/cnm.806

    Article  MATH  Google Scholar 

  13. Olovsson L, Simonsson K, Unosson M (2005) Selective mass scaling for explicit finite element analyses. Int J Numer Methods Eng 63(10):1436–1445. doi:10.1002/nme.1293

    Article  MATH  Google Scholar 

  14. Olovsson L, Unosson M, Simonsson K (2004) Selective mass scaling for thin walled structures modeled with tri-linear solid elements. Comput Mech 34:134–136. doi:10.1007/s00466-004-0560-6

    Article  MATH  Google Scholar 

  15. Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33(7):1413–1449. doi:10.1002/nme.1620330705

  16. Simo JC, Rifai M (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8):1595–1638. doi:10.1002/nme.1620290802

    Google Scholar 

  17. Tkachuk A, Bischoff M (2013) Variational methods for selective mass scaling. Comput Mech 52:563–570. doi:10.1007/s00466-013-0832-0

    Google Scholar 

  18. Tkachuk A, Wohlmuth B, Bischoff M Hybrid-mixed discretization of elasto-dynamic contact problems using consistent singular mass matrices. Int J Numer Meth Eng 94:473–493. doi:10.1002/nme.4457

  19. Washizu K (1975) Variational methods in elasticity and placticity, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  20. Zienkiewicz O, Taylor R (2006) The finite element method, 6th edn. Elsevier Science, Amsterdam

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to both reviewers for their detailed and helpful comments which significantly improved the manuscript. Moreover, the helpful discussions with our graduate student Baris Cansiz in the primary stage of this work are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Tkachuk.

Additional information

Support of Baden-Württemberg Stiftung gGmbH Grant HPC-10 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkachuk, A., Bischoff, M. Local and global strategies for optimal selective mass scaling. Comput Mech 53, 1197–1207 (2014). https://doi.org/10.1007/s00466-013-0961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0961-5

Keywords

Navigation