Skip to main content
Log in

The numerical investigation of spreading process of two viscoelastic droplets impact problem by using an improved SPH scheme

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the spreading process of two XPP model droplets impacting on a plate in sequence at low Reynolds number is numerically simulated by using an improved smoothed particle hydrodynamics (I-SPH) method. The I-SPH method is a coupled approach which uses the traditional SPH (TSPH) method near the boundary domain and uses a kernel-gradient-corrected SPH method in the interior of fluid flow for the reason of remedying the accuracy and stability of TSPH. Meanwhile, an artificial stress term and a periodic density re-initialization technique are presented to eliminate the tensile instability and restrain pressure oscillation, respectively. A new boundary treatment is also adopted. The ability and merit of proposed I-SPH method combined with other techniques are first illustrated by simulating three typical examples. Subsequently, the deformation phenomena of two viscoelastic droplets impacting and spreading on a plate in sequence are numerically investigated. Particularly, the influences of the falling time interval, Weissenberg number and other rheological parameters on the deformation process are studied respectively. All numerical results agree well with the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Tomé MF, Castelo A, Ferreira VG, McKee S, Walters K (2007) Die-swell, splashing drop and a numerical technique for solving the Oldroyd-B model for axisymmetric surface flows. J Non-Newtonian Flu Mech 141:148–166

    Article  MATH  Google Scholar 

  2. Lunkad Siddhartha F, Buwa Vivek V, Nigam KDP (2007) Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chem Eng Sci 62:7214–7224

    Article  Google Scholar 

  3. Tomé MF, Mangiavacchi N, Castelo A, Cuminato JA, McKee S (2002) A finite difference technique for simulating unsteady viscoelastic free surface flows. J Non-Newtonian Fluid Mech 106:61–106

    Article  MATH  Google Scholar 

  4. Jiang T, Ouyang J, Yang B, Ren J (2010) The SPH method for simulating a viscoelastic drop impact and spreading on an inclined plate. Comput Mech 45:573–583

    Article  MATH  MathSciNet  Google Scholar 

  5. Vebeeten WMH, Peters GWM, Baaijens FPT (2001) Differential constitutive equations for polymer melts: The extended Pom-Pom model. J Rheol 45:823–843

    Article  Google Scholar 

  6. McKee S, Tomé MF, Ferreira VG, Cuminato JA, Castelo A, Sousa FS, Mangiavacchi N (2008) The MAC method. Comput Fluids 37:907–930

    Article  MATH  MathSciNet  Google Scholar 

  7. Hirt CW, Nicholls BD (1981) Volume of fluid (VOF) method for dynamics of free boundaries. J Comput Phys 39:201–221

    Article  MATH  Google Scholar 

  8. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  9. Li Q, Ouyang J, Yang B, Jiang T (2011) Modelling and simulation of moving interfaces in gas-assisted injection moulding process. Appl Math Model 35:257–275

    Article  MATH  MathSciNet  Google Scholar 

  10. Li S, Qian D, Liu WK, Belytschko T (2000) A mesh-free contact-detection algorithm. Comput Methods Appl Mech Eng 190:3271–3292

    Article  MathSciNet  Google Scholar 

  11. Li S, Liu WK (2002) Mesh-free particle methods and their applications. Appl Mech Rev 54:1–34

    Article  Google Scholar 

  12. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a mesh-free particle method. World Scientific, Singapore

  13. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76

    Article  MathSciNet  Google Scholar 

  14. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

    Article  MATH  Google Scholar 

  15. Flebbe O, Munzel S, Herold H et al (1994) Smoothed particle hydrodynamics-physical viscosity and the simulation of accretion disks. Astrophys J 431:754–760

    Article  Google Scholar 

  16. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226

    Article  MATH  Google Scholar 

  17. Cleary PW, Monaghan JJ (1999) Conduction modeling using smoothed particle hydrodynamics. J Comput Phys 148:227–264

    Article  MATH  MathSciNet  Google Scholar 

  18. Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152:584–607

    Article  MATH  MathSciNet  Google Scholar 

  19. Shao S, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800

    Article  Google Scholar 

  20. Monaghan JJ, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput Phys Commun 87:225–235

    Article  MATH  Google Scholar 

  21. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475

    Article  MATH  Google Scholar 

  22. Hu X, Adams N (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213:844–861

    Article  MATH  MathSciNet  Google Scholar 

  23. Monaghan JJ (2002) SPH compressible turbulence. Mon Not R Astron Soc 335:843–852

    Article  Google Scholar 

  24. Ellero M, Kröger M, Hess S (2002) Viscoelastic flows studied by smoothed particle dynamics. J Non-Newtonian Fluid Mech 105:35–51

    Article  MATH  Google Scholar 

  25. Ellero M, Tanner RI (2005) SPH simulations of transient viscoelastic flows at low Reynolds number. J Non-Newtonian Fluid Mech 132:61–72

    Article  MATH  Google Scholar 

  26. Fang J, Owens RG, Tacher L, Parriaux A (2006) A numerical study of the SPH method for simulating transient viscoelastic free surface flows. J Non-Newtonian Fluid Mech 13:68–84

    Article  Google Scholar 

  27. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  28. Li SF, Liu WK (1999) Reproducing kernel hierarchical partition of unity. part I-formulation and theory. Int J Numer Methods Eng 45:251–288

    Google Scholar 

  29. Li SF, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part II-applications. Int J Numer Methods Eng 45:251– 288

    Google Scholar 

  30. Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190:225–239

    Article  MATH  Google Scholar 

  31. Liu MB, Liu GR (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56:19–36

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang GM, Batra RC (2004) Modified smoothed particle hydrodynamics method and its application to transient problems. Comput Mech 34:137–146

    MATH  Google Scholar 

  33. Batra RC, Zhang GM (2007) Search algorithm and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method. Comput Mech 40:531– 546

    Google Scholar 

  34. Zhang GM, Batra RC (2009) Symmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems. Comput Mech 43:321–340

    Article  MATH  MathSciNet  Google Scholar 

  35. Batra RC, Zhang GM (2008) SSPH basis functions for meshless methods, and comparison of solution of solutions with strong and weak formulations. Comput Mech 41:527–545

    Article  MATH  MathSciNet  Google Scholar 

  36. Liu MB, Xie WP, Liu GR (2005) Modeling incompressible flows using a finite particle method. Appl Math Model 29:1252–1270

    Article  MATH  Google Scholar 

  37. Tao Jiang, Jie Ouyang, Jinlian Ren (2012) A mixed corrected symmetric SPH (MC-SSPH) method for computational dynamic problems. Comput Phys Commun 183:50–62

    Article  MATH  MathSciNet  Google Scholar 

  38. Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225:1472–1492

    Article  MATH  MathSciNet  Google Scholar 

  39. Fetehi R, Manzari MT (2012) A consistent and fast weakly compressible smoothed particle hydrodynamics with a new wall boundary condition. Int J Num Methods Fluids 68:905–921

    Article  Google Scholar 

  40. Ren JL, Ouyang J, Jiang T, Li Q (2011) Simulation of complex filling process based on the generalized Newtonian model using a corrected SPH scheme. Comput Mech 49:643–665

    Article  MathSciNet  Google Scholar 

  41. Wang W, Li XK, Han XH (2009) Equal low-order finite element simulation of the planar contraction flow for branched polymer melts. Polym Plast Technol Eng 48:1158–1170

    Article  Google Scholar 

  42. Oishi CM, Martins FP, Tomé MF, Alves MA (2012) Numerical simulation of drop impact and jet buckling problems using the eXtended Pom-Pom model. J Non-Newtonian Fluid Mech 169–170:91–103

    Article  Google Scholar 

  43. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Article  MATH  MathSciNet  Google Scholar 

  44. Fang J, Parriaux A, Rentschler M, Ancey C (2009) Improved SPH methods for simulating free surface flows of viscous fluids. Appl Numer Math 59:251–271

    Google Scholar 

  45. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    MathSciNet  Google Scholar 

  46. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116:123–134

    Article  MATH  MathSciNet  Google Scholar 

  47. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159:290–311

    Article  MATH  Google Scholar 

  48. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662

    Article  MATH  Google Scholar 

  49. Yildiz M, Rook RA, Suleman A (2009) SPH with the multiple boundary tangent method. Int J Numer Methods Eng 77:1416–1438

    Article  MATH  MathSciNet  Google Scholar 

  50. Xu R, Stansby P, Laurence D (2009) Accuracy and stability incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228:6703–6725

    Article  MATH  MathSciNet  Google Scholar 

  51. Fujimoto H, Ito S, Takezaki I (2002) Experimental study of successive collision of two water droplets with a solid. Exp Fluids 33:500–502

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Natural Science Fundamental Research Project of Jiangsu Colleges and Universities of China (No. 12KJD570001), and the Jiangsu Natural Science Foundation for Youths of China (No. BK20130436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Guang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, T., Lu, LG. & Lu, WG. The numerical investigation of spreading process of two viscoelastic droplets impact problem by using an improved SPH scheme. Comput Mech 53, 977–999 (2014). https://doi.org/10.1007/s00466-013-0943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0943-7

Keywords

Navigation