Skip to main content
Log in

The SPH method for simulating a viscoelastic drop impact and spreading on an inclined plate

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the present work, the phenomenon of an Oldroyd-B drop impact and spreading on an inclined rigid plate at low impact angles is simulated numerically using the smoothed particle hydrodynamics (SPH) method. In order to remove the unphysical phenomenon of fracture and particle clustering in fluid stretching which is the so-called tensile instability, an artificial stress term is employed which has been successfully proposed in simulations of elastic solids. Particularly, the effects of surface inclination and the different regimes of drop impact and spreading on an inclined surface are investigated. The numerical results show the capability of the proposed scheme in handing the unsteady viscoelastic free surface flows. All numerical results of using the SPH method are in agreement with the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirt CW, Nicholls BD (1981) Volume of fluid (VOF) method for dynamics of free boundaries. J Comput Phys 39: 201–221

    Article  MATH  Google Scholar 

  2. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79: 12–49

    Article  MATH  MathSciNet  Google Scholar 

  3. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123: 421–434

    Google Scholar 

  4. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics theory and application to non-spherical stars. Mon Not R Astron Soc 181: 375–389

    MATH  Google Scholar 

  5. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 83: 1013–1024

    Article  Google Scholar 

  6. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110: 399–406

    Article  MATH  Google Scholar 

  7. Watkins SJ, Bhattal AS, Francis N, Turner JA, Whitworth AP (1996) A new prescription for viscosity in smoothed particle hydrodynamics. Astron Astrophys Suppl Ser 119: 177–187

    Article  Google Scholar 

  8. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136: 214–226

    Article  MATH  Google Scholar 

  9. Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152: 584–607

    Article  MATH  MathSciNet  Google Scholar 

  10. Shao S, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7): 787–800

    Article  Google Scholar 

  11. Cleary PW, Monaghan JJ (1999) Conduction modeling using smoothed particle hydrodynamics. J Comput Phys 148: 227–264

    Article  MATH  MathSciNet  Google Scholar 

  12. Monaghan JJ, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput Phys Commun 87: 225–235

    Article  MATH  Google Scholar 

  13. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33: 333–353

    Article  MATH  Google Scholar 

  14. Ata R, Soulaïmani A (2005) A stabilized SPH method for inviscid shallow water flows. Int J Numer Methods Fluids 47: 139–159

    Article  MATH  Google Scholar 

  15. Oger L, Savage SB (1999) Smoothed particle hydrodynamics for cohesive grains. Comput Methods Appl Mech Eng 180: 169–183

    Article  MATH  Google Scholar 

  16. Monaghan JJ (2002) SPH compressible turbulence. Mon Not R Astron Soc 335: 843–852

    Article  Google Scholar 

  17. Ellero M, Kröger M, Hess S (2002) Viscoelastic flows studied by smoothed particle dynamics. J Non-Newtonian Fluid Mech 105: 35–51

    Article  MATH  Google Scholar 

  18. Ellero M, Tanner RI (2005) SPH simulations of transient viscoelastic flows at low Reynolds number. J Non-Newtonian Fluid Mech 132: 61–72

    Article  Google Scholar 

  19. Fang J, Owens RG, Tacher L, Parriaux A (2006) A numerical study of the SPH method for simulating transient viscoelastic free surface flows. J Non-Newtonian Fluid Mech 13: 68–84

    Article  Google Scholar 

  20. Rafiee A, Manzari MT, Hosseini M (2007) An incompressible SPH method for simulation of unsteady viscoelastic free surface flows. Int J Non-Linear Mech 42: 1210–1223

    Google Scholar 

  21. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophs 30: 543–574

    Article  Google Scholar 

  22. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116: 123–134

    Article  MATH  MathSciNet  Google Scholar 

  23. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159: 290–311

    Article  MATH  Google Scholar 

  24. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Meth Appl Mech Eng 190: 6641–6662

    Article  MATH  Google Scholar 

  25. Melean Y, Sigalotti LDG, Hasmy A (2004) On the SPH tensile instability in forming viscous liquid drops. J Comput Phys 157: 191–200

    Article  Google Scholar 

  26. Liu MB, Xie WP, Liu GR (2005) Modeling incompressible flows using a finite particle method. Appl Math Model 29: 1252–1270

    Article  MATH  Google Scholar 

  27. Hernquist L, Katz N (1989) TreeSPH- A unification of SPH with the hierarchical tree method. Astrophys J Supp Ser 70: 419–446

    Article  Google Scholar 

  28. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Wtrwy Port Coastal Ocean Eng 125(3): 145–154

    Article  Google Scholar 

  29. Yildiz M, Rook RA, Suleman A (2009) SPH with the multiple boundary tangent method. Int J Numer Meth Eng 77: 1416–1438

    Article  MATH  MathSciNet  Google Scholar 

  30. Shaofan L, Dong Q, Wing KL, Ted B (2000) A mesh-free contact-detection algorithm. Comput Methods Appl Mech Eng 190: 3271–3292

    Google Scholar 

  31. Kulasegaram S, Bonet J, Lewis RW, Profit M (2004) A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Comput Mech 33: 316–325

    Article  MATH  Google Scholar 

  32. Li S, Liu WK (2002) Mesh-free particle methods and their applications. Appl Mech Rev 54: 1–34

    Article  Google Scholar 

  33. Heng X, Seiichi K, Yoshiaki O (2004) Modeling of a single drop impact onto liquid film using particle method. Int J Numer Meth Flu 45: 1009–1023

    Article  MATH  Google Scholar 

  34. An-Bang W, Chi-Chang C (2000) Splashing impact of a single drop onto very thin liquid films. Phys Fluids 12: 2155–2158

    Article  Google Scholar 

  35. Tome MF, Mangiavacchi N, Castelo A, Cuminato JA, McKee S (2002) A finite difference technique for simulating unsteady viscoelastic free surface flows. J Non-Newtonian Fluid Mech 106: 61–106

    Article  MATH  Google Scholar 

  36. Siddhartha FL, Vivek VB, Nigam KDP (2007) Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chem Eng Sci 62: 7214–7224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ouyang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, T., Ouyang, J., Yang, B. et al. The SPH method for simulating a viscoelastic drop impact and spreading on an inclined plate. Comput Mech 45, 573–583 (2010). https://doi.org/10.1007/s00466-010-0471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0471-7

Keywords

Navigation