Skip to main content
Log in

Some numerical issues on the use of XFEM for ductile fracture

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The XFEM is a powerful method to handle strong discontinuities in a finite element environment, especially in the study of the final stages of material failure, modelling the propagation of cracks, suppressing the need of remeshing. Nevertheless, for some materials undergoing large strain processes without noticeable volume changes, the discretization technique employed must not only describe the material behaviour but also correctly address the incompressibility constraints. In order to develop a robust formulation for this type of problems, an approach based on the analyses of the underlying sub-space of incompressible deformations embedded in the XFEM approximation is used, in the context of both infinitesimal and finite strains. This study motivated the extension of the conventional formulations of B-bar and F-bar to include the XFEM enrichment functions, whose performance is evaluated through some numerical examples and compared with competing methods such as the enhanced strain formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620

    Article  MathSciNet  MATH  Google Scholar 

  2. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  MATH  Google Scholar 

  3. Simone A, Wells G, Sluys L (2003) From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Eng 192(41–42): 4581–4607

    Article  MATH  Google Scholar 

  4. Benvenuti E (2008) A regularized XFEM framework for embedded cohesive interfaces. Comput Methods Appl Mech Eng 197: 4367–4378

    Article  MATH  Google Scholar 

  5. Seabra M, de Sa JC, Andrade F, Pires F (2011) Continuous-discontinuous formulation for ductile fracture. Int J Mater Form 4(3): 271–281

    Article  Google Scholar 

  6. Cazes F, Coret M, Combescure A, Gravouil A (2009) A thermodynamic method for the construction of a cohesive law from a non local damage model. Int J Solids Struct 46(6): 1476–1490

    Article  MATH  Google Scholar 

  7. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50(4): 993–1013

    Article  MATH  Google Scholar 

  8. Sukumar N, Prevost JH (2003) Modeling quasi-static crack growth with the extended finite element method part I: computer implementation. Int J Solids Struct 40(26): 7513–7537

    Article  MATH  Google Scholar 

  9. Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190(32–33): 4081–4193

    Article  MATH  Google Scholar 

  10. Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for XFEM simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 195(7–8): 501–515

    Article  MATH  Google Scholar 

  11. Prabel B, Combescure A, Gravouil A, Marie S (2007) Level set XFEM non-matching meshes: application to dynamic crack propagation in elastic-plastic media. Int J Numer Methods Eng 69(8): 1553–1569

    Article  MATH  Google Scholar 

  12. Iarve E (2003) Mesh independent modelling of cracks by using higher order shape functions. Int J Numer Methods Eng 56(6): 869–882

    Article  MATH  Google Scholar 

  13. Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions on the extended finite element method. Int J Numer Methods Eng 66(5): 767–795

    Article  MathSciNet  Google Scholar 

  14. Benvenuti E, Tralli A, Ventura G (2008) A regularized XFEM model for the transition from continuous to discontinuous displacements. Int J Numer Methods Eng 74(6): 911–944

    Article  MathSciNet  MATH  Google Scholar 

  15. Holdych D, Noble D, Secor R (2008) Quadrature rules for triangular and tetrahedral elements with generalized functions. Int J Numer Methods Eng 73(9): 1310–1327

    Article  MathSciNet  MATH  Google Scholar 

  16. Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17(043001)

  17. Ventura G, Gracie R, Belytschko T (2009) Fast integration and weight function blending in the extended finite element method. Int J Numer Methods Eng 77(1): 1–29

    Article  MathSciNet  MATH  Google Scholar 

  18. Natarajan S, Mahapatra D, Bordas S (2010) Integrating strong and weak discontinuities without integration subcells and example applications in a XFEM/GFEM framework. Int J Numer Methods Eng 83(3): 269–294

    MathSciNet  MATH  Google Scholar 

  19. Mousavi S, Sukumar N (2010) Generalized quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput Methods Appl Mech Eng 199(49–52): 3237–3249

    Article  MathSciNet  MATH  Google Scholar 

  20. Nagtegaal J, Parks D, Rice J (1974) On numerical accurate finite element solutions in the fully plastic range. Comput Methods Appl Mech Eng 4(2): 153–177

    Article  MathSciNet  MATH  Google Scholar 

  21. Malkus D, Hughes T (1978) Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15(1): 63–81

    Article  MATH  Google Scholar 

  22. Hughes T (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15(9): 1413–1418

    Article  MATH  Google Scholar 

  23. Cesar de Sa J (1986) Numerical modeling of incompressible problems in glass forming and rubber technology. PhD Thesis, University College of Swansea

  24. Cesar de Sa J, Jorge RN (1999) New enhanced strain elements for incompressible problems. Int J Numer Methods Eng 44: 229–248

    Article  MATH  Google Scholar 

  25. Cesar de Sa J, Areias P, Jorge RN (2001) Quadrilteral elements for the solution of elasto-plastic finite strain problems. Int J Numer Methods Eng 51(8): 883–917

    Article  MathSciNet  MATH  Google Scholar 

  26. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1-3): 177–208

    Article  MathSciNet  MATH  Google Scholar 

  27. de Souza Neto EA, Peric D, Dutko D, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20-22): 3277–3296

    Article  MATH  Google Scholar 

  28. de Souza Neto EA, Peric D, Owen D (2008) Computational methods for plasticity: theory and applications. Wiley, New York

    Book  Google Scholar 

  29. Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33(7): 1413–1449

    Article  MathSciNet  MATH  Google Scholar 

  30. Dolbow JE, Devan A (2004) Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test. Int J Numer Methods Eng 59(1): 47–67

    Article  MATH  Google Scholar 

  31. Legrain G, Moës N, Huerta A (2008) Stability of incompressible formulations enriched with X-FEM. Comput Methods Appl Mech Eng 197(21-24): 1835–1849

    Article  MATH  Google Scholar 

  32. Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8): 943–960

    Article  MATH  Google Scholar 

  33. Dolbow J, Moës N, Belytschko T (2000) Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem Anal Des 36(3-4): 235–260

    Article  MATH  Google Scholar 

  34. Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57(7): 1015–1038

    Article  MATH  Google Scholar 

  35. Fries TP (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5): 503–532

    Article  MathSciNet  MATH  Google Scholar 

  36. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3): 253–304

    MathSciNet  MATH  Google Scholar 

  37. Guibas L, Knuth D, Sharir M (1992) Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7: 381–413

    Article  MathSciNet  MATH  Google Scholar 

  38. Natarajan S, Bordas S, Mahapatra DR (2009) Numerical integration over arbitrary polygonal domains based on schwarz-christoffel conformal mapping. Int J Numer Methods Eng 80(1): 103–134

    Article  MathSciNet  MATH  Google Scholar 

  39. Driscoll A, Trefthen N (1996) Algorithm 756: a matlab toolbox for schwarz-christoffel mapping. ACM Trans Math Softw 22: 168–186

    Article  MATH  Google Scholar 

  40. Moran B, Ortiz M, Shih F (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Numer Methods Eng 29(3): 438–514

    Article  MathSciNet  Google Scholar 

  41. Simo JC, Taylor RL (1991) Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput Methods Appl Mech Eng 85(3): 273–310

    Article  MathSciNet  MATH  Google Scholar 

  42. Khoei AR, Biabanaki S, Anahid M (2008) Extended finite element method for three-dimensional large plasticity deformations on arbitrary interfaces. Comput Methods Appl Mech Eng 197(9–12): 1100–1114

    Article  MathSciNet  MATH  Google Scholar 

  43. Loehnert S, Mueller-Hoeppe DS, Wriggers P (2011) 3d corrected XFEM approach and extension to finite deformation theory. Int J Numer Methods Eng 86(4–5): 431–452

    Article  MathSciNet  MATH  Google Scholar 

  44. Legrain G, Moës N, Verron E (2005) Stress analysis around crack tips in finite strain problems using the eXtended finite element method. Int J Numer Methods Eng 63(2): 290–314

    Article  MATH  Google Scholar 

  45. Brink U, Stein E (1996) On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput Mech 19(1): 105–119

    Article  MATH  Google Scholar 

  46. Piltner R, Taylor R (1999) A systematic construction of b-bar functions for linear and non-linear mixed-enhanced finite elements for plane elasticity problems. Int J Numer Methods Eng 44: 615–639

    Article  MathSciNet  MATH  Google Scholar 

  47. Korelc J (2009) Automation of primal and sensitivity analysis of transient coupled problems. Comput Mech 44(5): 631–639

    Article  MathSciNet  MATH  Google Scholar 

  48. Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4): 312–327

    Article  Google Scholar 

  49. Korelc J (2009) AceGen—Users manual. www.fgg.uni-lj.si/symech/

  50. Korelc J (2009) AceFem—Users manual. www.fgg.uni-lj.si/symech/

  51. Wang P (1986) FINGER: a symbolic system for automatic generation of numerical programs in finite element analysis. J Symb Comput 2(3): 305–316

    Article  MATH  Google Scholar 

  52. Korelc J (1997) Automatic generation of finite element code by simultaneous optimization of expressions. Theor Comput Sci 187(1–2): 231–248

    Article  MATH  Google Scholar 

  53. Flory P (1961) Thermodynamic relations for highly elastic materials. Trans Faraday Soc 57: 829–838

    Article  MathSciNet  Google Scholar 

  54. Simo J, Taylor R, Pister K (1985) Variational and projection methods for volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51: 177–208

    Article  MathSciNet  MATH  Google Scholar 

  55. Holzapfel G (1996) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int J Numer Methods Eng 39(22): 3903–3926

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana R. R. Seabra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seabra, M.R.R., Cesar de Sa, J.M.A., Šuštarič, P. et al. Some numerical issues on the use of XFEM for ductile fracture. Comput Mech 50, 611–629 (2012). https://doi.org/10.1007/s00466-012-0694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0694-x

Keywords

Navigation