Skip to main content
Log in

New anisotropic crack-tip enrichment functions for the extended finite element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the extended finite element method (X-FEM) is implemented to analyze fracture mechanics problems in elastic materials that exhibit general anisotropy. In the X-FEM, crack modeling is addressed by adding discontinuous enrichment functions to the standard FE polynomial approximation within the framework of partition of unity. In particular, the crack interior is represented by the Heaviside function, whereas the crack-tip is modeled by the so-called crack-tip enrichment functions. These functions have previously been obtained in the literature for isotropic, orthotropic, piezoelectric and magnetoelectroelastic materials. In the present work, the crack-tip functions are determined by means of the Stroh’s formalism for fully anisotropic materials, thus providing a new set of enrichment functions in a concise and compact form. The proposed formulation is validated by comparing the obtained results with other analytical and numerical solutions. Convergence rates for both topological and geometrical enrichments are presented. Performance of the newly derived enrichment functions is studied, and comparisons are made to the well-known classical crack-tip functions for isotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas S, Fries TP (2010) A unified enrichment scheme for fracture problems. IOP Conf Series Mater Sci Eng 10(1): 012045

    Article  Google Scholar 

  2. Asadpoure A, Mohammadi S (2007) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Methods Eng 69: 2150–2172

    Article  MATH  Google Scholar 

  3. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 4: 607–632

    MATH  Google Scholar 

  5. Boone TJ, Wawrzynek PA, Ingraffea AR (1987) Finite element modelling of fracture propagation in orthotropic materials. Eng Fract Mech 26: 185–201

    Article  Google Scholar 

  6. Béchet E, Scherzer M, Kuna M (2009) Application of the X-FEM to the fracture of piezoelectric materials. Int J Numer Methods Eng 77: 1535–1565

    Article  MATH  Google Scholar 

  7. Béchet E, Minnebo H, Möes N, Burgardt B (2005) Improved implementation and robustness study of the x-fem for stress analysis around cracks. Int J Numer Methods Eng 64: 1033–1056

    Article  MATH  Google Scholar 

  8. Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comp Methods Appl Mech Eng 190: 6825–6846

    Article  MATH  Google Scholar 

  9. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84: 253–304

    MathSciNet  MATH  Google Scholar 

  10. Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40: 1483–1504

    Article  MathSciNet  Google Scholar 

  11. García-Sánchez F, Sáez A, Domínguez J (2004) Traction boundary elements for cracks in anisotropic solids. Eng Anal Bound Elements 28: 667–676

    Article  Google Scholar 

  12. Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64: 354–381

    Article  MATH  Google Scholar 

  13. Muskhelishvili NI (1953) Some basic problems of the mathematical theory of elasticity, 2nd edn. Noordhoff, Leiden

    MATH  Google Scholar 

  14. Mousavi SE, Sukumar N (2010) Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comp Methods Appl Mech Eng 199(49-52): 3237–3249

    Article  MathSciNet  MATH  Google Scholar 

  15. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  MATH  Google Scholar 

  16. Nobile L, Carloni C (2005) Fracture analysis for orthotropic cracked plates. Compos Struct 68(3): 285–293

    Article  Google Scholar 

  17. Pan E, Amadei B (1996) Fracture mechanics analysis of cracked 2-D anisotropic media with a new formulation of the boundary element method. Int J Fract 77: 161–174

    Article  Google Scholar 

  18. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35: 379–386

    Article  Google Scholar 

  19. Rojas-Díaz R, Sukumar N, Sáez A, García-Sánchez F (2011) Fracture in magnetoelectroelastic materials using the extended finite element method. Int J Numer Methods Eng. doi:10.1002/nme.3219

  20. Stroh A (1958) Dislocation and cracks in anisotrpic elasticity. Philos Mag 3: 625–646

    Article  MathSciNet  MATH  Google Scholar 

  21. Suo Z (1990) Singularities, interfaces and cracks in dissimilar anisotropic media. Proc R Soc Lond A 427: 331–358

    Article  MathSciNet  MATH  Google Scholar 

  22. Sollero P, Aliabadi M (1993) Fracture mechanics analysis of anisotropic plates by the boundary element method. Int J Fract 64: 269–284

    Article  Google Scholar 

  23. Sollero P, Aliabadi MH (1995) Anisotropic analysis of cracks in composite laminates using the dual boundary element method. Compos Struct 31: 229–233

    Article  Google Scholar 

  24. Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J Fract 1: 189–203

    Article  Google Scholar 

  25. Sladek J, Sladek V, Atluri S (2004) Meshless local petrov-galerkin method in anisotropic elasticity. Comput Model Eng Sci 6: 477– 489

    MathSciNet  MATH  Google Scholar 

  26. Sukumar N, Huang ZY, Prévost JH, Suo Z (2004) Partition of unity enrichment for bimaterial interface cracks. Int J Numer Methods Eng 59: 1075–1102

    Article  MATH  Google Scholar 

  27. Ting TCT (1996) Anisotropic elasticity. Oxford University Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rojas-Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, G., Rojas-Díaz, R., Sáez, A. et al. New anisotropic crack-tip enrichment functions for the extended finite element method. Comput Mech 50, 591–601 (2012). https://doi.org/10.1007/s00466-012-0691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0691-0

Keywords

Navigation