Skip to main content
Log in

Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new method is developed to obtain guaranteed error bounds on pointwise quantities of interest for linear transient viscodynamics problems. The calculation of strict error bounds is based on the concept of “constitutive relation error” (CRE) and the solution of an adjoint problem. The central and original point of this work is the treatment of the singularity in space and time introduced by the loading of the adjoint problem. Hence, the adjoint solution is decomposed into two parts: (i) an analytical part determined from Green’s functions; (ii) a residual part approximated with classical numerical tools (finite element method, Newmark integration scheme). The capabilities and the limits of the proposed approach are analyzed on a 2D example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York

    MATH  Google Scholar 

  2. Ainsworth M, Oden J (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142: 1–88

    Article  MathSciNet  MATH  Google Scholar 

  3. Aki K, Richards PG (1930) Quantitative seismology. University Science Books, USA

    Google Scholar 

  4. Aleixo R, de Oliveira EC (2008) Green’s function for the lossy wave equation. Revista Brasileira de Ensino de Fisica 30(1): 1302

    Google Scholar 

  5. Alfrey T (1944) Non-homogeneous stresses in viscoelastic media. Q Appl Math II(2): 113–119

    MathSciNet  Google Scholar 

  6. Babuska I, Rheinboldt W (1978) Error estimates for adaptative finite element computations. SIAM J Numer Anal 15(4): 736–754

    Article  MathSciNet  MATH  Google Scholar 

  7. Becker R, Rannacher R (2001) An optimal control approach to shape a posteriori error estimation in finite elements methods. In: Acta numerica. Cambridge Press, Cambridge, pp 1–102

    Google Scholar 

  8. Boussinesq J (1885) Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques. Gauthier-Villars, Paris

    MATH  Google Scholar 

  9. Carini A, Donato OD (1992) Fundamental solutions for linear viscoelastic continua. Int J Solids Struct 29(23): 2989–3009

    Article  MATH  Google Scholar 

  10. Chamoin L, Ladevéze P (2007) Bounds on history-dependent or independent local quantities in viscoelasticity problems solved by approximate methods. In J Numer Methods Eng 71: 1387–1411

    Article  MATH  Google Scholar 

  11. Chamoin L, Ladevéze P (2008) A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems. Computer Methods Appl Mech Eng 197(9): 994–1014

    Article  MATH  Google Scholar 

  12. Erdélyi A (1954) Tables of integral transforms, vol 1. McGraw-Hill, USA

    Google Scholar 

  13. Eringen AC, Suhubi ES (1975) Elastodynamics. Academic Press, London

    MATH  Google Scholar 

  14. Fuentes D, Littlefield D, Oden J, Prudhomme S (2006) Extensions of goal-oriented error estimators methods to simulations of highly-nonlinear response of shock-loaded elastomer-reinforced structures. Comput Methods Appl Mech Eng 195: 4659–4680

    Article  MathSciNet  MATH  Google Scholar 

  15. Gastine J, Ladevéze P, Marin P, Pelle J (1992) Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput Methods Appl Mech Eng 94(3): 303–314

    Article  MATH  Google Scholar 

  16. Gonzales JA, Abascal R (2004) Linear viscoelastic boundary element for steady state moving loads. Eng Anal Boundary Elem 28: 815–823

    Article  Google Scholar 

  17. Graff KF (1975) Wave motion in elastic solids. Dover, New York

    MATH  Google Scholar 

  18. Grätsch T, Bathe KJ (2005) A posteriori error estimation techniques in practical finite element analysis. Comput Struct 83: 235–265

    Article  Google Scholar 

  19. Grätsch T, Hartmann F (2006) Pointwise error estimation and adaptivity for the finite element method using fundamental solutions. Comput Mech 37: 394–407

    Article  MathSciNet  MATH  Google Scholar 

  20. Houston P, Süli E (2002) Adaptive finite element approximation of hyperbolic problems. Tech. rep. NA-02/01, Oxford University Computing Laboratory

  21. Kausel E (2006) Fundamental solutions in elastodynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  22. Ladevéze P (2008) Strict upper error bounds for computed outputs of interest in computational structural mechanics. Comput Mech 42: 271–286

    Article  MATH  Google Scholar 

  23. Ladevéze P, Chamoin L (2010) Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest. Int J Numer Methods Eng 84(13): 1638–1664

    Article  MATH  Google Scholar 

  24. Ladevéze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3): 485–509

    Article  MathSciNet  MATH  Google Scholar 

  25. Ladevéze P, Maunder E (1996) A general method for recovering equilibrating element tractions. Comput Methods Appl Mech Eng 137: 111–151

    Article  MATH  Google Scholar 

  26. Ladevéze P, Pelle J (2004) Mastering calculations in linear and nonlinear mechanics. Springer, Berlin

    Google Scholar 

  27. Ladevéze P, Rougeot P (1997) New advances on a posteriori error on constitutive relation in finite element analysis. Comput Methods Appl Mech Eng 150: 239–249

    Article  MATH  Google Scholar 

  28. Ladevéze P, Rougeot P, Blanchard P, Moreau J (1999) Local error estimators for finite element linear analysis. Comput Methods Appl Mech Eng 176: 231–246

    Article  MATH  Google Scholar 

  29. Ladevéze P, Waeytens J (2009) Model verification in dynamics through strict upper error bounds. Comput Methods Appl Mech Eng 198(21-26): 1775–1784

    Article  MATH  Google Scholar 

  30. Mindlin IA (1962) Free elastic waves on the surface of a tube of infinite thickness. PMM 27: 551–554

    Google Scholar 

  31. Mindlin RD (1936) Force at a point in the interior of a semi-infinite solid. Physics 7: 195–202

    Article  MATH  Google Scholar 

  32. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150

    Article  MATH  Google Scholar 

  33. Oden J, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl 41: 735–756

    Article  MathSciNet  MATH  Google Scholar 

  34. Paraschivoiu M, Peraire J, Patera A (1997) A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput Methods Appl Mech Eng 150: 289–312

    Article  MathSciNet  MATH  Google Scholar 

  35. Pled F, Chamoin L, Ladevéze P (2011) On the techniques for constructing admissible stress fields in model verification: performances on engineering examples. Int J Numer Methods Eng. doi:10.1002/nme.3180

  36. Schleupen A, Ramm E (2000) Local and global error estimations in linear structural dynamics. Comput Struct 76: 741–756

    Article  MathSciNet  Google Scholar 

  37. Strouboulis T, Babuska I (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181: 43–69

    Article  MathSciNet  MATH  Google Scholar 

  38. Strouboulis T, Babuska I, Datta D, Copps K, Gangaraj S (2000) A posteriori estimation and adaptive control of the error in the quantity of interest. part i: A posteriori estimation of the error in the von mises stress and the stress intensity factor. Comput Methods Appl Mech Eng 181: 261–294

    Article  MathSciNet  MATH  Google Scholar 

  39. Taylor ME (1978) Propagation, reflection, and diffraction of singularities of solutions to wave equations. Bull Am Math Soc 84(4)

  40. Tie B, Aubry D (2010) Goal-oriented adaptive remeshing for elastic wave propagation. In: ECCM 2010—IV European conference on computational mechanics, Paris, France

  41. Verfürth R (1999) A review of a posteriori error estimation techniques for elasticity problems. Comput Methods Appl Mech Eng 176: 419–440

    Article  MATH  Google Scholar 

  42. Zienkiewicz O, Zhu J (1987) A simple error estimator and adaptative procedure for practical engineering analysis. Int J Numer Methods Eng 24: 337–357

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Ladevéze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waeytens, J., Chamoin, L. & Ladevéze, P. Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems. Comput Mech 49, 291–307 (2012). https://doi.org/10.1007/s00466-011-0642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0642-1

Keywords

Navigation