Skip to main content

Global Existence of Solutions for the One-Dimensional Response of Viscoelastic Solids Within the Context of Strain-Limiting Theory

  • Chapter
  • First Online:
Research in Mathematics of Materials Science

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 31))

Abstract

In this work global-in-time existence of solutions for the initial-value problem based on a model explaining nonlinear response of one-dimensional viscoelastic solids exhibiting limiting strain behaviour is proved. In this model, a nonlinear constitutive relation depending on the rate of change of the linearized strain is considered. This constitutive equation is obtained from implicit constitutive theory under the smallness assumption of the strain and the strain rate. Local-in-time existence of solutions for this problem was obtained in Erbay et al. (J Differ Equ 269:9720–9739, 2020) under certain assumptions on the nonlinearity. In this work, firstly, local existence for the displacement is given. Then, the blow-up condition is stated and an equivalent condition is formulated. Finally, an energy inequality is proven which is used to show that the local solutions, in fact, exist globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bulíček, J. Málek, K.R. Rajagopal, E. Süli, On elastic solids with limiting small strain: modelling and analysis. EMS Surv. Math. Sci. 1(2), 283–332 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Bulíček, J. Málek, E. Süli, Analysis and approximation of a strain-limiting nonlinear elastic model. Math. Mech. Solids 20(1), 92–118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bulíček, V. Patel, Y. Şengül, E. Süli, Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Commun. Pure Appl. Anal. 20(5), 1931–1960 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bulíček, V. Patel, Y. Şengül, E. Süli, Existence and uniqueness of global weak solutions to strain-limiting viscoelasticity with Dirichlet boundary data (submitted)

    Google Scholar 

  5. R. Bustamante, Some topics on a new class of elastic bodies. Proc. R. Soc. A 465, 1377–1392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Bustamante, K.R. Rajagopal, Solutions of some simple boundary value problems within the context of a new class of elastic materials. Int. J. Nonlinear Mech. 46(2), 376–386 (2011)

    Article  Google Scholar 

  7. J.C. Criscione, K.R. Rajagopal, On the modeling of the non-linear response of soft elastic bodies. Int. J. Nonlinear Mech. 56, 20–24 (2013)

    Article  Google Scholar 

  8. H.A. Erbay, Y. Şengül, Traveling waves in one-dimensional non-linear models of strain-limiting viscoelasticity. Int. J. Nonlinear Mech. 77, 61–68 (2015)

    Article  Google Scholar 

  9. H.A. Erbay, Y. Şengül, A thermodynamically consistent nonlinear model of one-dimensional strain-limiting viscoelasticity. Z. Angew. Math. Phys. 71, 94 (2020)

    Article  MATH  Google Scholar 

  10. H.A. Erbay, A. Erkip, Y. Şengül, Local existence of solutions to the initial-value problem for one-dimensional strain-limiting viscoelasticity. J. Differ. Equ. 269, 9720–9739 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Itou, V.A. Kovtunenko, K.R. Rajagopal, Contacting crack faces within the context of bodies exhibiting limiting strains. JSIAM Lett. 9, 61–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Itou, V.A. Kovtunenko, K.R. Rajagopal, On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body. Math. Mech. Solids 23(3), 433–444 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Itou, V.A. Kovtunenko, K.R. Rajagopal, Crack problem within the context of implicitly constituted quasi-linear viscoelasticity. Math. Mod. Methods Appl. Sci. 29(2), 355–372 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Kannan, K.R. Rajagopal, G. Saccomandi, Unsteady motions of a new class of elastic solids. Wave Motion 51, 833–843 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Kulvait, J. Málek, K.R. Rajagopal, Anti-plane stress state of a plate with a V-notch for a new class of elastic solids. Int. J. Fract. 179(1–2), 59–73 (2013)

    Article  Google Scholar 

  16. V. Kulvait, J. Málek, K.R. Rajagopal, Modeling gum metal and other newly developed titanium alloys within a new class of constitutive relations for elastic bodies. Arch. Mech. 69(1), 223–241 (2017)

    Google Scholar 

  17. T. Mai, J.R. Walton, On monotonicity for strain-limiting theories of elasticity. Math. Mech. Solids 20(2), 121–139 (2014)

    Article  MATH  Google Scholar 

  18. R. Meneses, O. Orellana, R. Bustamante, A note on the wave equation for a class of constitutive relations for nonlinear elastic bodies that are not Green elastic. Math. Mech. Solids 23(2), 148–158 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Merodio, K.R. Rajagopal, On constitutive equations for anisotropic nonlinearly viscoelastic solids. Math. Mech. Solids 12, 131–147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Montero, R. Bustamante, A. Ortiz-Bernardin, A finite element analysis of some boundary value problems for a new type of constitutive relation for elastic bodies. Acta Mech. 227(2), 601–615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Muliana, K.R. Rajagopal, A.S. Wineman, A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta Mech. 224, 2169–2183 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Ortiz, R. Bustamante, K.R. Rajagopal, A numerical study of a plate with a hole for a new class of elastic bodies. Acta Mech. 223, 1971–1981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Ortiz-Bernardin, R. Bustamante, K.R. Rajagopal, A numerical study of elastic bodies that are described by constitutive equations that exhibit limited strains. Int. J. Solids Struct. 51, 875–885 (2014)

    Article  Google Scholar 

  24. K.R. Rajagopal, On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. K.R. Rajagopal, The elasticity of elasticity. Z. Angew. Math. Phys. 58, 309–317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. K.R. Rajagopal, A note on a reappraisal and generalization of the Kelvin-Voigt model. Mech. Res. Commun. 36, 232–235 (2009)

    Article  MATH  Google Scholar 

  27. K.R. Rajagopal, On a new class of models in elasticity. J. Math. Comput. Appl. 15(4), 506–528 (2010)

    MathSciNet  MATH  Google Scholar 

  28. K.R. Rajagopal, Non-linear elastic bodies exhibiting limiting small strain. Math. Mech. Solids 16(1), 122–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. K.R. Rajagopal, Conspectus of concepts of elasticity. Math. Mech. Solids 16, 536–562 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. K.R. Rajagopal, On the nonlinear elastic response of bodies in the small strain range. Acta Mech. 225, 1545–1553 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. K.R. Rajagopal, A note on the linearization of the constitutive relations of non-linear elastic bodies. Mech. Res. Commun. 93, 132–137 (2018)

    Article  Google Scholar 

  32. K.R. Rajagopal, An implicit constitutive relation for describing the small strain response of porous elastic solids whose material moduli are dependent on the density. Math. Mech. Solids 26(8), 1138–1146 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. K.R. Rajagopal, G. Saccomandi, Shear waves in a class of nonlinear viscoelastic solids. Q. JI Mech. Appl. Math. 56(2), 311–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. K.R. Rajagopal, A.R. Srinivasa, A thermodynamic frame work for rate type fluid models. J. Non-Newtonian Fluid Mech. 88, 207–227 (2000)

    Article  MATH  Google Scholar 

  35. K.R. Rajagopal, J.R. Walton, Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack. Int. J. Fract. 169, 39–48 (2011)

    Article  MATH  Google Scholar 

  36. K.R. Rajagopal, A.S. Wineman, Mechanical Response of Polymers: An Introduction (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  37. K.R. Rajagopal, A.S. Wineman, A quasi-correspondence principle for quasi-linear viscoelastic solids. Mech. Time-Depend. Mater. 12, 1–14 (2008)

    Article  Google Scholar 

  38. Y. Şengül, One-dimensional strain-limiting viscoelasticity with an arctangent type nonlinearity. Appl. Eng. Sci. 7, 100058 (2021)

    Google Scholar 

  39. Y. Şengül, Viscoelasticity with limiting strain. Discrete Contin. Dyn. Syst. S 14(1), 57–70 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Şengül .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Şengül, Y. (2022). Global Existence of Solutions for the One-Dimensional Response of Viscoelastic Solids Within the Context of Strain-Limiting Theory. In: Español, M.I., Lewicka, M., Scardia, L., Schlömerkemper, A. (eds) Research in Mathematics of Materials Science. Association for Women in Mathematics Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-04496-0_14

Download citation

Publish with us

Policies and ethics