Skip to main content
Log in

A two-scale approach for the analysis of propagating three-dimensional fractures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a generalized finite element method (GFEM) for crack growth simulations based on a two-scale decomposition of the solution—a smooth coarse-scale component and a singular fine-scale component. The smooth component is approximated by discretizations defined on coarse finite element meshes. The fine-scale component is approximated by the solution of local problems defined in neighborhoods of cracks. Boundary conditions for the local problems are provided by the available solution at a crack growth step. The methodology enables accurate modeling of 3-D propagating cracks on meshes with elements that are orders of magnitude larger than those required by the FEM. The coarse-scale mesh remains unchanged during the simulation. This, combined with the hierarchical nature of GFEM shape functions, allows the recycling of the factorization of the global stiffness matrix during a crack growth simulation. Numerical examples demonstrating the approximating properties of the proposed enrichment functions and the computational performance of the methodology are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Areias P, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63: 760–788

    Article  MATH  Google Scholar 

  2. Babuška I, Melenk J (1995) The partition of unity finite element method. Technical Report BN-1185, Institute for Physical Science and Technology, University of Maryland

  3. Babuška I, Melenk J (1997) The partition of unity method. Int J Numer Methods Eng 40: 727–758

    Article  MATH  Google Scholar 

  4. Babuška I, Caloz G, Osborn J (1994) Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J Numer Anal 31(4): 945–981

    Article  MATH  MathSciNet  Google Scholar 

  5. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620

    Article  MATH  MathSciNet  Google Scholar 

  6. Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17: 24. doi:10.1088/0965-0393/17/4/043001

    Article  Google Scholar 

  7. Ben Dhia H, Jamond O (2010) On the use of XFEM within the Arlequin framework for the simulation of crack propagation. Comput Methods Appl Mech Eng 199: 1403–1414

    Article  MATH  MathSciNet  Google Scholar 

  8. Bordas S, Moran B (2006) Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng Fract Mech 73: 1176–1201

    Article  Google Scholar 

  9. Chahine E, Laborde P, Renard Y (2008) Spider-xfem, an extended finite element variant for partially unknown crack-tip displacement. Eur J Comput Mech 15(5–7): 625–636

    Google Scholar 

  10. Chahine E, Laborde P, Renard Y (2009) A reduced basis enrichment for the extended finite element method. Math Model Nat Phenom 4(1): 88–105

    Article  MATH  MathSciNet  Google Scholar 

  11. dell’Erba D, Aliabadi M (2000) Three-dimensional thermo-mechanical fatigue crack growth using BEM. Int J Fatigue 22: 261–273

    Article  Google Scholar 

  12. Duarte C (1996) The hp Cloud Method, PhD dissertation. The University of Texas at Austin, Austin

  13. Duarte C, Kim DJ (2008) Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput Methods Appl Mech Eng 197(6–8): 487–504. doi:10.1016/j.cma.2007.08.017

    Article  MATH  MathSciNet  Google Scholar 

  14. Duarte C, Oden J (1995) Hp clouds–A meshless method to solve boundary-value problems. Technical Report 95-05, TICAM. The University of Texas at Austin

  15. Duarte C, Oden J (1996) An it hp adaptive method using clouds. Comput Methods Appl Mech Eng 139: 237–262

    Article  MATH  MathSciNet  Google Scholar 

  16. Duarte C, Oden J (1996) Hp clouds—an hp meshless method. Numer Methods Partial Differen Equ 12: 673–705

    Article  MATH  MathSciNet  Google Scholar 

  17. Duarte C, Babuška I, Oden J (2000) Generalized finite element methods for three dimensional structural mechanics problems. Comput Struct 77: 215–232

    Article  Google Scholar 

  18. Duarte C, Hamzeh O, Liszka T, Tworzydlo W (2001) A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190(15–17): 2227–2262. doi:10.1016/S0045-7825(00)00233-4

    Article  MATH  Google Scholar 

  19. Duarte C, Kim DJ, Babuška I (2007) Chapter: a global-local approach for the construction of enrichment functions for the generalized fem and its application to three-dimensional cracks. In: Leitão V, Alves C, Duarte C (eds) Advances in meshfree techniques, Computational Methods in Applied Sciences, vol 5. Springer, The Netherlands. iSBN 978-1-4020-6094-6

  20. Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85: 519–525

    Article  Google Scholar 

  21. Fan R, Fish J (2008) The rs-method for material failure simulations. Int J Numer Methods Eng 73(11): 1607–1623. doi:10.1002/nme.2134

    Article  MATH  MathSciNet  Google Scholar 

  22. Fish J, Nath A (1993) Adaptive and hierarchical modelling of fatigue crack propagation. Int J Numer Methods Eng 36: 2825–2836

    Article  MATH  Google Scholar 

  23. Fries TP, Belytschko T (2010) The generalized/extended finite element method: an overview of the method and its applications. Int J Numer Methods Eng 253–304

  24. Galland F, Gravouil A, Malvesin E, Rochette M (2011) A global model reduction approach for 3D fatigue crack growth with confined plasticity. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2010.08.018

  25. Gravouil A, Moës N, Belytschko T (2002) Non-planar 3d crack growth by the extended finite element and level sets – Part II: Level set update. Int J Numer Methods Eng 53(11): 2569–2586

    Article  Google Scholar 

  26. Guidault PA, Allix O, Champaney L, Cornuault C (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197: 381–399

    Article  MATH  Google Scholar 

  27. Hou T, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134: 169–189

    Article  MATH  MathSciNet  Google Scholar 

  28. Jiao X (2007) Face offsetting: A unified framework for explicit moving interfaces. J Comput Phys 220(2): 612–625

    Article  MATH  MathSciNet  Google Scholar 

  29. Kim DJ, Duarte C, Proenca S (2009) Generalized finite element method with global-local enrichments for nonlinear fracture analysis. In: Mattos HDC, Alves M (eds) International Symposium on Mechanics of Solids—MECSOL 2009, ABCM—Brazilian Society of Mechanical Sciences and Engineering, Rio de Janeiro, pp 317–330. iSBN 978-85-85769-43-7

  30. Kim DJ, Pereira J, Duarte C (2010) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse generalized FEM meshes. Int J Numer Methods Eng 81(3): 335–365. doi:10.1002/nme.2690

    MATH  Google Scholar 

  31. Kim DJ, Duarte C, Sobh N (2011) Parallel simulations of three-dimensional cracks using the generalized finite element method. Comput Mech 47(3): 265–282. doi:10.1007/s00466-010-0546-5

    Article  MATH  MathSciNet  Google Scholar 

  32. Lee SH, Song JH, Yoon YC, Zi G, Belytschko T (2004) Combined extended and superimposed finite element method for cracks. Int J Numer Methods Eng 59(1119–1136). doi:10.1002/nme.908

  33. Loehnert S, Belytschko T (2007) A multiscale projection method for macro/microcrack simulations. Int J Numer Methods Eng 71(12): 1466–1482

    Article  MATH  MathSciNet  Google Scholar 

  34. Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314

    Article  MATH  Google Scholar 

  35. Menk A, Bordas P (2010) Numerically determined enrichment functions for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals. Int J Numer Methods Eng 83(7): 805–828

    MATH  MathSciNet  Google Scholar 

  36. Mi Y, Aliabadi M (1994) Three-dimensional crack growth simulation using BEM. Comput Struct 52: 871–878

    Article  MATH  Google Scholar 

  37. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  MATH  Google Scholar 

  38. Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets – Part I: Mechanical model. Int J Numer Methods Eng 53(11): 2549–2568

    Article  MATH  Google Scholar 

  39. Mousavi S, Grinspun E, Sukumar N (2011) Harmonic enrichment functions: a unified treatment of multiple, intersecting and branched cracks in the extended finite element method. Int J Numer Methods Eng 85: 1306–1322. doi:10.1002/nme.3020

    MATH  MathSciNet  Google Scholar 

  40. Oden J, Duarte C, Zienkiewicz O (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153: 117–126

    Article  MATH  MathSciNet  Google Scholar 

  41. O’Hara P, Duarte C, Eason T (2009) Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients. Comput Methods Appl Mech Eng 198(21-26): 1857–1871. doi:10.1016/j.cma.2008.12.024

    Article  MATH  Google Scholar 

  42. O’Hara P, Duarte C, Eason T (2011) Transient analysis of sharp thermal gradients using coarse finite element meshes. Comput Methods Appl Mech Eng 200(5–8): 812–829. doi:10.1016/j.cma.2010.10.005

    Article  MATH  MathSciNet  Google Scholar 

  43. Oskay C, Fish J (2008) On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems. Comput Mech 42(2): 181–195

    Article  MATH  Google Scholar 

  44. Paris A, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85: 528–534

    Article  Google Scholar 

  45. Passieux J, Gravouil A, Rethore J, Baietto M (2010) Direct estimation of generalized stress intensity factors using a three-scale concurrent multigrid X-FEM. Int J Numer Methods Eng. doi:10.1002/nme.3037

  46. Pereira J, Duarte C, Guoy D, Jiao X (2009) Hp-Generalized FEM and crack surface representation for non-planar 3-D cracks. Int J Numer Methods Eng 77(5): 601–633. doi:10.1002/nme.2419

    Article  MATH  MathSciNet  Google Scholar 

  47. Pereira J, Duarte C, Jiao X, Guoy D (2009) Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems. Comput Mech 44(1): 73–92. doi:10.1007/s00466-008-0356-1

    Article  MATH  Google Scholar 

  48. Pereira J, Duarte C, Jiao X (2010) Three-dimensional crack growth with hp-generalized finite element and face offsetting methods. Comput Mech 46(3): 431–453. doi:10.1007/s00466-010-0491-3

    Article  MATH  MathSciNet  Google Scholar 

  49. Pierres E, Baietto M, Gravouil A (2010) A two-scale extended finite element method for modelling 3D crack growth with interfacial contact. Comput Methods Appl Mech Eng 199: 1165–1177. doi:10.1016/j.cma.2009.12.006

    Article  MATH  MathSciNet  Google Scholar 

  50. Rannou J, Gravouil A, Baietto-Dubourg M (2009) A local multigrid X-FEM strategy for 3-D crack propagation. Int J Numer Methods Eng 77: 581–600. doi:10.1002/nme.2427

    Article  MATH  MathSciNet  Google Scholar 

  51. Rashid M (1998) The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis. Comput Methods Appl Mech Eng 154: 133–150

    Article  MATH  Google Scholar 

  52. Richard H, Fulland M, Sander M (2005) Theoretical crack path prediction. Fatigue Fract Eng Mater Struct 28: 3–12. doi:10.1111/j.1460-2695.2004.00855.x

    Article  Google Scholar 

  53. Schöllmann M, Richard H, Kullmer G, Fulland M (2002) A new criterion for the prediction of crack development in multiaxially loaded structures. Int J Fract 117: 129–141

    Article  Google Scholar 

  54. Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190: 4081–4193

    Article  MATH  Google Scholar 

  55. Strouboulis T, Zhang L, Babuška I (2003) Generalized finite element method using mesh-based handbooks: Application to problems in domains with many voids. Comput Methods Appl Mech Eng 192: 3109–3161

    Article  MATH  Google Scholar 

  56. Strouboulis T, Zhang L, Babuška I (2004) p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems. Int J Numer Methods Eng 60: 1639–1672

    Article  MATH  Google Scholar 

  57. Sukumar N, Chopp D, Moran B (2003) Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fract Mech 70: 29–48

    Article  Google Scholar 

  58. Sukumar N, Chopp D, Béchet E, Moës N (2008) Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int J Numer Methods Eng 76: 727–748

    Article  MATH  Google Scholar 

  59. Tada H, Paris P, Irwin G (2000) The stress analysis of cracks handbook, 3rd edn. ASME Press, New York

    Book  Google Scholar 

  60. Ural A, Heber G, Wawrzynek P, Ingraffea A, Lewicki D, Neto J (2005) Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear. Eng Fract Mech 72: 1148–1170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, J.P.A., Kim, DJ. & Duarte, C.A. A two-scale approach for the analysis of propagating three-dimensional fractures. Comput Mech 49, 99–121 (2012). https://doi.org/10.1007/s00466-011-0631-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0631-4

Keywords

Navigation