Skip to main content
Log in

Characterization of fracture processes by continuum and discrete modelling

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A large number of methods to describe fracture mechanical features of structures on basis of computational algorithms have been developed in the past due to the importance of the topic. In this paper, current and promising numerical approaches for the characterization of fracture processes are presented. A fracture phenomenon can either be depicted by a continuum formulation or a discrete notch. Thus, starting point of the description is a micromechanically motivated formulation for the development of a local failure situation. A current, generalized method without any restriction to material modelling and loading situation in order to describe an existing crack in a structure is available through the material force approach. One possible strategy to simulate arbitrary crack growth is based on an adaptive implementation of cohesive elements in combination with the standard discretization of the body. In this case, crack growth criteria and the determination of the crack propagation direction in combination with the modification of the finite element mesh are required. The nonlinear structural behaviour of a fibre reinforced composite material is based on the heterogeneous microstructure. A two-scale simulation is therefore an appropriate and effective way to take into account the scale differences of macroscopic structures with microscopic elements. In addition, fracture mechanical structural properties are far from being sharp and deterministic. Moreover, a wide range of uncertainties influence the ultimate load bearing behaviour. Therefore, it is evident that the deterministic modelling has to be expanded by a characterization of the uncertainty in order to achieve a reliable and realistic simulation result. The employed methods are illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaliske M, Netzker C, Näser B (2009) Evaluation of crack driving forces at finite viscoelasticity: Theory and experiments. In: Steinmann P (ed) IUTAM symposium: Progress in the theory and numerics of configurational mechanics. Springer, Dordrecht, pp 193–202

  2. Dal H, Kaliske M (2009) A micro-continuum-mechanical material model for failure of rubber-like materials: Application to ageing induced fracturing. J Mech Phys Solids 57: 1340–1356

    Article  MATH  Google Scholar 

  3. Geißler G, Netzker C, Kaliske M (2010) Discrete crack path prediction by an adaptive cohesive crack model. Eng Frac Mech 77: 3541–3557

    Article  Google Scholar 

  4. Eshelby JD (1951) The force on an elastic singularity. Philos Trans R Soc Lond Ser A Math Phys Sci 244: 87–112

    Article  MathSciNet  MATH  Google Scholar 

  5. Epstein M (2002) The Eshelby tensor and the theory of continuous distributions of inhomogeneities. Mech Res Commun 29: 501–506

    Article  MATH  Google Scholar 

  6. Maugin GA (2003) Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechanics. J Elast 71: 81–103

    Article  MathSciNet  MATH  Google Scholar 

  7. Braun M (1997) Configurational forces induced by finite-element discretization. Proceedings of the Estonian Academy of Sciences, Physics, Mathematics 46:24–31

  8. Steinmann P (2000) Application of material force to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct 37: 7371–7391

    Article  MathSciNet  MATH  Google Scholar 

  9. Steinmann P, Ackermann D, Barth FJ (2001) Application of material forces to hyperelastostatic fracture mechanics. II. Computational Setting. Int J Solids Struct 38: 5509–5526

    Article  MATH  Google Scholar 

  10. Maugin GA (1993) Material inhomogeneities in elasticity. Chapman & Hall, London

    MATH  Google Scholar 

  11. Kienzler R, Herrmann G (2000) Mechanics in material space. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Gurtin ME (2000) Configurational forces as basic concepts of continuum physics. Springer, New York

    Google Scholar 

  13. Eshelby JD (1975) The elastic energy-momentum tensor. J Elast 5: 321–335

    Article  MathSciNet  MATH  Google Scholar 

  14. Näser B, Kaliske M (2004) Formulierung materieller Kräfte für elastische und inelastische Materialien. Leipzig Annu Civ Eng Rep 9: 433–453

    Google Scholar 

  15. Menzel A, Denzer R, Steinmann P (2004) On the comparision of two approaches to compute material forces for inelastic materials. Application to single-slip crystal-plasticity. Comput Methods Appl Mech Eng 193: 5411–5428

    Article  MathSciNet  MATH  Google Scholar 

  16. Näser B, Kaliske M, Müller R (2007) Material forces for inelastic models at large strains application to fracture mechanics. Comput Mech 40: 1005–1013

    Article  MATH  Google Scholar 

  17. Näser B, Kaliske M, Mars WV (2010) Fatigue investigation of elastomeric structures. Tire Sci Technol 38: 194–212

    Article  Google Scholar 

  18. Näser B, Kaliske M (2003) Numerische bruchmechanische Analysen mittels materieller Kräfte. Leipzig Annu Civ Eng Rep 8: 265–280

    Google Scholar 

  19. Liebe T, Denzer R, Steinmann P (2003) Application of the material force method to isotropic continuum damage. Comput Mech 30: 171–184

    Article  MATH  Google Scholar 

  20. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42: 339–362

    Article  Google Scholar 

  21. Kaliske M, Rothert H (1998) Constitutive approach to rate-independent properties of filled elastomers. Int J Solids Struct 35: 2057–2071

    Article  MATH  Google Scholar 

  22. Miehe C, Göktepe S, Lulei F (2004) A micro–macro approach to rubber-like materials. Part I. The non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52: 2617–2660

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaliske M, Heinrich G (1998) An extended tube-model for rubber elasticity: statistical–mechanical theory and finite element implementation. Rubber Chem Technol 72: 602–632

    Article  Google Scholar 

  24. Meyer KH, Ferri C (1935) Sur l’élasticité du caoutchouc. Helvetica Chimica Acta 18: 570–589

    Article  Google Scholar 

  25. Volokh KY (2007) Hyperelasticity with softening for modeling materials failure. J Mech Phys Solids 55: 2237–2264

    Article  MathSciNet  MATH  Google Scholar 

  26. Volokh KY (2007) Softening hyperelasticity for modeling materials failure: Analysis of cavitation in hydrostatic tension. Int J Solids Struct 44: 5043–5055

    Article  MATH  Google Scholar 

  27. Gao H, Klein P (1998) Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J Mech Phys Solids 46: 187–218

    Article  MATH  Google Scholar 

  28. Morse PM (1929) Diatomic molecules to the wave mechanics. II. Vibrational levels. Physical Review 34: 57–64

    Article  MATH  Google Scholar 

  29. Bažant ZP, Oh BH (1986) Efficient numerical integration on the surface of a sphere. Zeitschrift für angewandte Mathematik und Mechanik 66: 37–49

    Article  MATH  Google Scholar 

  30. Treloar LRG (1944) Stress–strain data for vulcanised rubber under various types of deformation. Trans Faraday Soc 40: 59–70

    Article  Google Scholar 

  31. Hamdi A, Nait Abdelaziz M, Ait Hocine N, Heuillet P, Benseddiq N (2006) Fracture criterion of rubber-like materials under plane stress conditions. Polym Test 25: 994–1005

    Article  Google Scholar 

  32. Kawabata S (1973) Fracture and mechanical behavior of rubberlike polymers under finite deformation in biaxial stress field. J Macromol Sci Part B Phys 8: 605–630

    Article  Google Scholar 

  33. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8: 100–104

    Article  Google Scholar 

  34. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7: 55–129

    Article  MathSciNet  Google Scholar 

  35. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6: 773–781

    Article  Google Scholar 

  36. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54: 525–531

    Article  MATH  Google Scholar 

  37. Tvergaard V (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng A 125: 203–213

    Article  Google Scholar 

  38. Geißler G, Kaliske M (2010) Time-dependent cohesive zone modelling for discrete fracture simulation. Eng Fract Mech 77: 153–169

    Article  Google Scholar 

  39. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 9: 1397–1434

    Article  Google Scholar 

  40. Tijssens MG, Sluys BL, Vander Giessen E (2000) Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces. Eur J Mech A/Solids 19: 761–780

    Article  MATH  Google Scholar 

  41. Carpinteri A, Colombo G (1989) Numerical analysis of catastrophic softening behaviour (snap-back instability). Comput Struct 31: 607–636

    Article  Google Scholar 

  42. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33: 2899–2938

    Article  MATH  Google Scholar 

  43. Pandolfi A, Ortiz M (1998) Solid modeling aspects of three-dimensional fragmentation. Eng Comput 14: 287–308

    Article  MATH  Google Scholar 

  44. Pandolfi A, Ortiz M (2002) An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng Comput 18: 148–159

    Article  Google Scholar 

  45. Pandolfi A, Krysl P, Ortiz M (1999) Finite element simulation of ring expansion and fragmentation. Int J Fract 95: 279–297

    Article  Google Scholar 

  46. Ruiz G, Ortiz M, Pandolfi A (2000) Three-dimensional finite-element simulation of the dynamic brazilian tests on concrete cylinders. Int J Numer Methods Eng 48: 963–994

    Article  MATH  Google Scholar 

  47. Ruiz G, Pandolfi A, Ortiz M (2001) Three-dimensional cohesive modeling of dynamic mixed-mode fracture. Int J Numer Methods Eng 52: 97–120

    Article  Google Scholar 

  48. Papoulia KD, Vavasis SA (2003) Time continuity in cohesive finite element modeling. Int J Numer Methods Eng 58: 679–701

    Article  MATH  Google Scholar 

  49. Sam CH, Papoulia KD, Vavasis SA (2005) Obtaining initially rigid cohesive finite element models that are temporally convergent. Eng Fract Mech 72: 2247–2267

    Article  Google Scholar 

  50. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35: 379–386

    Article  Google Scholar 

  51. Gürses E (2007) Aspects of energy minimization in solid mechanics: evolution of microstructures and brittle crack propagation. Dissertationsschrift, Institut für Mechanik, Universität Stuttgart, Stuttgart

  52. Wells G, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50: 2667–2682

    Article  MATH  Google Scholar 

  53. Dumstorff P, Meschke G (2004) Investigation of crack growth criteria in the context of the extended finite element method. In: European conference on computational mechancis in applied sciences and engineering. Jyväskylä, Finland

  54. Pidaparti R, Yang T, Soedel W (1990) Plane stress finite element prediction of mixed-mode rubber fracture and experimental verification. Int J Fract 45: 221–241

    Article  Google Scholar 

  55. Miehe C (2001) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55: 1285–1322

    Article  MathSciNet  Google Scholar 

  56. Miehe C (2003) Computational micro-to-macro transition for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng 192: 559–591

    Article  MathSciNet  MATH  Google Scholar 

  57. Frangopol D, Maute K (2003) Life-cycle reliability-based optimization of civil and aerospace structures. Comput Struct 81: 397–410

    Article  Google Scholar 

  58. Oden J, Belytschko T, Babuska I, Hughes T (2003) Research directions in computational mechanics. Comput Methods Appl Mech Eng 192: 913–922

    Article  MathSciNet  MATH  Google Scholar 

  59. Möller B, Beer M (2004) Fuzzy randomness—uncertainty in civil engineering and computational mechanics. Springer, Berlin

    MATH  Google Scholar 

  60. Viertl R (1996) Statistical methods for non-precise data. CRC Press, New York

    Google Scholar 

  61. Spaethe G (1992) Die Sicherheit tragender Baukonstruktionen. Springer, Wien

    Book  Google Scholar 

  62. Klir GJ, Folger TA (1988) Fuzzy sets, uncertainty, and information. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  63. Graf W, Jenkel C, Pannier S, Sickert JU, Steinigen F (2009) Numerical structural monitoring with the uncertainty model fuzzy randomness. Int J Reliab Saf 3: 218–234

    Article  Google Scholar 

  64. Resch E, Kaliske M (2010) Three-dimensional numerical analyses of load-bearing behavior and failure of multiple double-shear dowel-type connections in timber engineering. Comput Struct 88: 165–177

    Article  Google Scholar 

  65. Schmidt J (2009) Modellierung und numerische Analyse von Strukturen aus Holz. Habilitationsschrift, Institut für Statik und Dynamik der Tragwerke, TU Dresden

  66. Schmidt J, Kaliske M (2009) Models for numerical failure analysis of wooden structures. Eng Struct 31: 571–579

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaliske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaliske, M., Dal, H., Fleischhauer, R. et al. Characterization of fracture processes by continuum and discrete modelling. Comput Mech 50, 303–320 (2012). https://doi.org/10.1007/s00466-011-0578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0578-5

Keywords

Navigation