Skip to main content
Log in

Finite element simulations of poly-crystalline shape memory alloys based on a micromechanical model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a finite element implementation of a micromechanically motivated model for poly-crystalline shape memory alloys, based on energy minimization principles. The implementation allows simulation of anisotropic material behavior as well as the pseudo-elastic and pseudo-plastic material response of whole samples. The evolving phase distribution over the entire specimen is calculated. The finite element model predicts the material properties for a relatively small number of grains. For different points of interest in the specimen the model can be consistently evaluated with a significantly higher number of grains in a post-processing step, which allows to predict the re-orientation of martensite at different loads. The influence of pre-texture on the material’s properties, due to some previous treatment like rolling, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Ration Mech Anal 100: 13–52

    Article  MATH  MathSciNet  Google Scholar 

  2. Bouvet C, Calloch S, Lexcellent C (1987) A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur J Mech A Solids 23: 37–61

    Article  MathSciNet  Google Scholar 

  3. Govindjee S, Miehe C (2001) A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput Methods Appl Mech Eng 191: 215–238

    Article  MATH  Google Scholar 

  4. Govindjee S, Mielke A, Hall GJ (2003) The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis. J Mech Phys Solids 51: 763+

    Article  MathSciNet  Google Scholar 

  5. Govindjee S, Hackl K, Heinen R (2003) An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Continuum Mech Thermodyn 18: 443–453

    Article  MathSciNet  Google Scholar 

  6. Hackl K, Fischer FD (2008) On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc R Soc A 464: 117–132

    Article  MATH  MathSciNet  Google Scholar 

  7. Hackl K, Heinen R (2008) A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy. Continuum Mech Thermodyn 19: 499

    Article  MATH  MathSciNet  Google Scholar 

  8. Heinen R, Hackl K (2007) On the calculation of energy- minimizing phase fractions in shape memory alloys. Comput Methods Appl Mech Eng 196: 2401–2412

    Article  MATH  MathSciNet  Google Scholar 

  9. Helm D, Haupt P (2003) Shape memory behaviour: modelling within continuum thermomechanics. Int J Solids Struct 40: 827–849

    Article  MATH  Google Scholar 

  10. Kohn RV (1991) The relaxation of a double-well energy. Continuum Mech Thermodyn 3: 193–236

    Article  MATH  MathSciNet  Google Scholar 

  11. Lexcellent C, Vivet A et al (2001) Experimental and numerical determination of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. J Mech Phys Solids 50: 2717–2735

    Article  Google Scholar 

  12. Mehrabadi MM, Cowin SC (1987) Eigentensors of linear anisotropic elastic materials. Q J Mech Appl Math 43: 15–41

    Article  MathSciNet  Google Scholar 

  13. Mielke A (2003) Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont Mech Thermodyn 15: 351–382

    Article  MATH  MathSciNet  Google Scholar 

  14. Mielke A, Theil F, Levitas VI (2002) A variational formulation of rate-independent phase transformations using an extremum principle. Arch Ration Mech Anal 162(2): 137–177

    Article  MATH  MathSciNet  Google Scholar 

  15. Ortiz M, Repetto EA (1999) Nonconvex energy minimization and dislocation structures in ductile single crystals. J Mech Phys Solids 47: 397–462

    Article  MATH  MathSciNet  Google Scholar 

  16. Pan H, Thamburaja P, Chau FS (2007) Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning. Int J Plasticity 23: 711–732

    Article  MATH  Google Scholar 

  17. Schaefer A, Wagner MF-X (2009) Strain mapping at propagating interfaces in pseudoelastic NiTi. EDP Sciences ESOMAT 2009, art. 06031

  18. Sedlák P et al (2005) Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy. Acta Mater 53: 3643–3661

    Article  Google Scholar 

  19. Stein E, Sagar G (2008) Theory and finite element computation of cyclic martensitic phase transformation at finite strain. Int J Numer Methods Eng 74: 1–31

    Article  MATH  MathSciNet  Google Scholar 

  20. Stupkiewicz S, Petryk H (2002) Modelling of laminated micro-structures in stress-induced martensitic transformation. J Mech Phys Solids 50: 2303–2331

    Article  MATH  MathSciNet  Google Scholar 

  21. Taylor RL. FEAP—a Finite Element Analysis Program. http://www.ce.berkeley.edu/~rlt/

  22. Thamburaja P (1987) Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J Mech Phys Solids 53: 825–856

    Article  MathSciNet  Google Scholar 

  23. Truskinovsky L (1994) About the normal growth approximation in the dynamical theory of phase-transitions. Continuum Mech Thermodyn 6: 185–208

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Junker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junker, P., Hackl, K. Finite element simulations of poly-crystalline shape memory alloys based on a micromechanical model. Comput Mech 47, 505–517 (2011). https://doi.org/10.1007/s00466-010-0555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0555-4

Keywords

Navigation