Skip to main content
Log in

Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work we consider the fluid-structure interaction in fully nonlinear setting, where different space discretization can be used. The model problem considers finite elements for structure and finite volume for fluid. The computations for such interaction problem are performed by implicit schemes, and the partitioned algorithm separating fluid from structural iterations. The formal proof is given to find the condition for convergence of this iterative procedure in the fully nonlinear setting. Several validation examples are shown to confirm the proposed convergence criteria of partitioned algorithm. The proposed strategy provides a very suitable basics for code-coupling implementation as discussed in Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold M (2001) Constraint partitioning in dynamic iteration methods. Z Angew Math Mech 81: 735–738

    MATH  Google Scholar 

  2. Arnold M, Gunther M (2001) Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numer Math 41: 1–25

    Article  MathSciNet  MATH  Google Scholar 

  3. Barcelos M, Bavestrello H, Maute K (2006) A Schur–Newton–Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis. Comput Methods Appl Mech Eng 195: 2050–2069

    Article  MATH  Google Scholar 

  4. Bathe K-J, Zhang H (2009) A mesh adaptivity procedure for CFD and fluid-structure interactions. Comput Struct 87(11–12): 604–617

    Article  Google Scholar 

  5. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-stucture interaction: theory, algorithms and computations. Comput Mech 43: 3–37

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  MATH  Google Scholar 

  7. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoraci aortic blood flow due to implation of the jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  8. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89

    Article  MathSciNet  MATH  Google Scholar 

  9. Bazilevs Y, Hsu M-C, Zhang Y, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498

    Article  Google Scholar 

  10. Belytschko T, Yen HJ, Mullen R (1979) Mixed methods for time integration. Comput Methods Appl Mech Eng 17(18): 259–275

    Article  Google Scholar 

  11. Belytschko T (1983) An overview of semidiscretization and time integration procedures. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis. North-Holland, Amsterdam, pp 1–65

    Google Scholar 

  12. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  13. Brenan KE, Campbell SLV, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  14. Bruneau C-H, Saad M (2006) The 2D lid-driven cavity problem revisited. Comput Fluids 35: 326–348

    Article  MATH  Google Scholar 

  15. Causin P, Gerbeau J-F, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194(42–44): 4506–4527

    Article  MathSciNet  MATH  Google Scholar 

  16. Degroote J, Bathe K-J, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct 87(11–12): 793–801

    Article  Google Scholar 

  17. Demirdžić I, Perić M (1988) Space conservation law in finite volume calculations of fluid flow. Int J Numer Methods Fluids 8(9): 1037–1050

    Article  MATH  Google Scholar 

  18. Deparis S, Discacciati M, Fourestey G, Quarteroni A (2006) Fluid-structure algorithms based on Steklov-Poincaré operators. Comput Methods Appl Mech Eng 195(41–43): 5797–5812

    Article  MathSciNet  MATH  Google Scholar 

  19. Dettmer WG, Perić D (2007) A fully implicit computational strategy for strongly coupled fluid-solid interaction. Arch Comput Methods Eng 14: 205–247

    Article  MathSciNet  MATH  Google Scholar 

  20. Deuflhard P, Hairer E, Zugck J (1987) One-step and extrapolation methods for differential-algebraic systems. Numer Math 51: 501–516

    Article  MathSciNet  MATH  Google Scholar 

  21. Farhat C, Lesoinne M (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182: 499–515

    Article  MATH  Google Scholar 

  22. Farhat C, Lesoinne M, Maman N (1995) Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int J Numer Methods Eng 21(10): 356–367

    MathSciNet  Google Scholar 

  23. Felippa CA, Park KC (2004) Synthesis tools for structural dynamics and partitioned analysis of coupled systems. In: Ibrahimbegović A, Brank B (eds) NATO advanced research workshop. IOS Press, The Netherlands, pp 50–111

    Google Scholar 

  24. Felippa CA, Park KC, de Runtz JA (1977) Stabilization of staggered solution procedures for fluid-structure interaction analysis. In: Computational methods for fluid-structure interaction problems, pp 95–124

  25. Fernández MÁ, Gerbeau J-F, Gloria A, Vidrascu M (2008) Domain decomposition based Newton methods for fluid-structure interaction problems. In: ESAIM: proceedings, vol 22, pp 67–82. http://edpsciences.org

  26. Fernández MÁ, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid–structure coupling. Comput Struct 83(2–3): 127–142

    Article  Google Scholar 

  27. Ferziger JH, Perić M (2002) Computational methods for fluid dynamics, 3rd edn. Springler, Berlin

    MATH  Google Scholar 

  28. Förster C, Wall WA, Ramm E (2006) On the geometric conservation law in transient ow calculations on deforming domains. Int J Numer Methods Fluids 50: 1369–1379

    Article  MATH  Google Scholar 

  29. Förster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196: 1278–1291

    Article  MATH  Google Scholar 

  30. Franca LP, Hughes TJR, Stenberg R (1993) Stabilized finite element methods. In: Incompressible computational fluid dynamics, pp 87–107

  31. Gerbeau JF, Vidrascu M (2003) A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. Math Model Numer Anal 37(4): 631–647

    Article  MathSciNet  MATH  Google Scholar 

  32. Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48: 387–411

    Article  MATH  Google Scholar 

  33. Heil M (2004) An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems. Comput Methods Appl Mech Eng 193(1–2): 1–23

    Article  MathSciNet  MATH  Google Scholar 

  34. Hortmann M, Perić M, Scheuerer G (1990) Finite volume multigrid prediction of laminar natural convection: bench-mark solutions. Int J Numer Methods Fluids 11: 189–207

    Article  MATH  Google Scholar 

  35. Hübner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid-structure interaction using space-time finite elements. Comput Methods Appl Mech Eng 193: 2087–2104

    Article  MATH  Google Scholar 

  36. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation from incompressible viscous flows. In: Interdisciplinary finite element analysis: proceedings of the US-Japan Seminar Held at Cornell University, p 179. College of Engineering and School of Civil and Environmental Engineering of Cornell University

  37. Hughes TJR, Pister KS, Taylor RL (1979) Implicit-explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17: 159–182

    Article  Google Scholar 

  38. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99

    Article  MathSciNet  MATH  Google Scholar 

  39. Ibrahimbegovic A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods. Springer, Berlin

    MATH  Google Scholar 

  40. Ibrahimbegovic A, Brank B (2005) Engineering structures under extreme conditions: multi-physics and multi-scale computer models in non-linear analysis and optimal design. IOS Press, The Netherlands

    Google Scholar 

  41. Ibrahimbegovic Z, Mamouri S (2002) Energy conserving and decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations. Comput Methods Appl Mech Eng 191: 4241–4258

    Article  MATH  Google Scholar 

  42. Joosten M, Dettmer WG, Perić D (2009) Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction. Int J Numer Methods Eng 78(7): 757–778

    Article  MATH  Google Scholar 

  43. Kassiotis C, Colliat J-B, Ibrahimbegovic A, Matthies HG (2009) Multiscale in time and stability analysis of operator split solution procedure applied to thermomechanical problems. Eng Comput 1–2: 205–223

    Google Scholar 

  44. Kassiotis C, Ibrahimbegovic A, Matthies HG, Brank B (2010) Stable splitting scheme for general form of associated plasticity including different scales of space and time. Comput Methods Appl Mech Eng 199: 1254–1264

    Article  MathSciNet  Google Scholar 

  45. Küttler U, Förster C, Wall WA (2006) A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains. Comput Mech 38: 417–429

    Article  MATH  Google Scholar 

  46. Küttler U, Wall WA (2008) Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput Mech 43(1): 61–72

    Article  MATH  Google Scholar 

  47. Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190(24–25): 3039–3067

    Article  MATH  Google Scholar 

  48. Legay A, Chessa J, Belytschko T (2006) An Eulerian-Lagrangian method for fluid-structure interaction based on level sets. Comput Methods Appl Mech Eng 195(17–18): 2070–2087

    Article  MathSciNet  MATH  Google Scholar 

  49. Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Methods Appl Mech Eng 195: 2028–2049

    Article  MathSciNet  MATH  Google Scholar 

  50. Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid-structure interaction. Comput Struct 81: 805–812

    Article  Google Scholar 

  51. Mehl M, Brenk M, Bungartz HJ, Daubner K, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid-structure simulations on Cartesian grids. Comput Mech 43(1): 115–124

    Article  MATH  Google Scholar 

  52. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid-structure interactions. Int J Numer Methods Fluids 21: 933–953

    Article  MATH  Google Scholar 

  53. Mok DP, Wall WA, Ramm E (2001) Accelerated iterative substructuring schemes for instationnary fluid-structure interaction. In: First MIT conference computational fluid and solid mechanics. Elsevier, Amsterdam, pp 1325–1328

  54. Oden JT, Belytschko T, Babuska I, Hughes TJR (2003) Research directions in computational mechanics. Comput Methods Appl Mech Eng 192(7–8): 913–922

    Article  MathSciNet  MATH  Google Scholar 

  55. OpenCFD LTD. Openfoam home page, 2000–2009. http://www.opencfd.co.uk/openfoam

  56. Perić D, Dettmer WG, Saksono PH (2006) Modelling fluid-induced structural vibrations: reducing the structural risk for stormywinds. In: Ibrahimbegovic A (ed) NATO advanced research workshop, ARW 981641, Opatija, Croatia, pp 239–268

  57. Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems–Part II: energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190: 3147–3170

    Article  MATH  Google Scholar 

  58. Roshko A (1952) Of the development of turbulent wakes from vortex streets. Ph.D. thesis, California Institute of Technology, Pasadena, CA

  59. Ross MR, Sprague MA, Felippa CA, Park KC (2009) Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods. Comput Methods Appl Mech Eng 198(9–12): 986–1005

    Article  Google Scholar 

  60. Schäfer M, Turek S (1996) Benchmark computations of laminar flow around a cylinder. Notes Numer Fluid Mech 52: 547–566

    Google Scholar 

  61. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar T (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid structure interactions. Comput Mech 46(1): 31–41

    Article  MathSciNet  MATH  Google Scholar 

  62. Tezduyar T, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46(1): 17–29

    Article  MathSciNet  MATH  Google Scholar 

  63. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242

    Article  MATH  Google Scholar 

  64. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195(17–18): 2002–2027

    Article  MathSciNet  MATH  Google Scholar 

  65. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43(1): 39–49

    Article  MATH  Google Scholar 

  66. Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Lect Notes Comput Sci Eng 53: 371

    Article  MathSciNet  Google Scholar 

  67. Wall WA, Mok DP, Ramm E (1999) Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures. In: Solids, structures and coupled problems in engineering, proceedings of the European conference on computational mechanics

  68. Wall WA, Ramm E (1998) Fluid-structure interaction based upon a stabilized (ALE) finite element method. Sonderforschungsbereich 404, Institut für Baustatik und Baudynamik, Germany

  69. Wang H, Belytschko T (2009) Fluid-structure interaction by the discontinuous-Galerkin method for large deformations. Int J Numer Methods Eng 77(1): 30–49

    Article  MathSciNet  MATH  Google Scholar 

  70. Zienkiewicz OC, Taylor RL (2001) The finite element method, solid mechanics, vol 2, 5th edn. Butterworth Heinemann, Oxford

    Google Scholar 

  71. Zienkiewicz OC, Taylor RL (2001) The finite element method, the basis, vol 1, 5th edn. Butterworth Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Ibrahimbegovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassiotis, C., Ibrahimbegovic, A., Niekamp, R. et al. Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47, 305–323 (2011). https://doi.org/10.1007/s00466-010-0545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0545-6

Keywords

Navigation