Skip to main content
Log in

Refactorization of Cauchy’s Method: A Second-Order Partitioned Method for Fluid–Thick Structure Interaction Problems

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This work focuses on the derivation and the analysis of a novel, strongly-coupled partitioned method for fluid–structure interaction problems. The flow is assumed to be viscous and incompressible, and the structure is modeled using linear elastodynamics equations. We assume that the structure is thick, i.e., modeled using the same number of spatial dimensions as fluid. Our newly developed numerical method is based on Robin boundary conditions, as well as on the refactorization of the Cauchy’s one-legged ‘\(\theta \)-like’ method, written as a sequence of Backward Euler–Forward Euler steps used to discretize the problem in time. This family of methods, parametrized by \(\theta \), is B-stable for any \(\theta \in [\frac{1}{2} , 1]\) and second-order accurate for \(\theta = \frac{1}{2} + {\mathcal {O}}(\tau )\), where \(\tau \) is the time step. In the proposed algorithm, the fluid and structure sub-problems, discretized using the Backward Euler scheme, are first solved iteratively until convergence. Then, the variables are linearly extrapolated, equivalent to solving Forward Euler problems. We prove that the iterative procedure is convergent, and that the proposed method is stable provided \(\theta \in [\frac{1}{2},1]\). Numerical examples, based on the finite element discretization in space, explore convergence rates using different values of parameters in the problem, and compare our method to other strongly-coupled partitioned schemes from the literature. We also compare our method to both a monolithic and a non-iterative partitioned solver on a benchmark problem with parameters within the physiological range of blood flow, obtaining an excellent agreement with the monolithic scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Badia, S., Nobile, F., Vergara, C.: Fluid–structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Badia, S., Nobile, F., Vergara, C.: Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 198(33), 2768–2784 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Baek, H., Karniadakis, G.: A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping. J. Comput. Phys. 231(2), 629–652 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Banks, J., Henshaw, W., Schwendeman, D.: An analysis of a new stable partitioned algorithm for FSI problems. Part I: incompressible flow and elastic solids. J. Comput. Phys. 269, 108–137 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Banks, J., Henshaw, W., Schwendeman, D.: An analysis of a new stable partitioned algorithm for FSI problems. Part II: incompressible flow and structural shells. J. Comput. Phys. 268, 399–416 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bathe, K.-J., Zhang, H.: Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Methods Eng. 60(1), 213–232 (2004)

    Article  MATH  Google Scholar 

  7. Bazilevs, Y., Calo, V., Hughes, T., Zhang, Y.: Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput. Mech. 43(1), 3–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bukač, M., Čanić, S., Glowinski, R., Muha, B., Quaini, A.: A modular, operator-splitting scheme for fluid–structure interaction problems with thick structures. Int. J. Numer. Methods Fluids 74(8), 577–604 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bukač, M., Čanić, S., Muha, B.: A partitioned scheme for fluid–composite structure interaction problems. J. Comput. Phys. 281, 493–517 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bukac, M., Muha, B.: Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid–structure interaction. SIAM J. Numer. Anal. 54(5), 3032–3061 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bukač, M., Yotov, I., Zunino, P.: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differ. Equ. 31(4), 1054–1100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burkardt, J., Trenchea, C.: Refactorization of the midpoint rule. Appl. Math. Lett. 107, 106438 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burman, E., Durst, R., Fernández, M., Guzmán, J.: Fully discrete loosely coupled Robin-Robin scheme for incompressible fluid-structure interaction: stability and error analysis (2020). arXiv:2007.03846

  14. Burman, E., Durst, R., Guzman, J.: Stability and error analysis of a splitting method using Robin–Robin coupling applied to a fluid–structure interaction problem (2019). arXiv:1911.06760

  15. Burman, E., Fernández, M.: Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Eng. 198, 766–784 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Burman, E., Fernández, M.: Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling. Int. J. Numer. Meth. Eng. 97(10), 739–758 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burman, E., Fernández, M.: An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes. Comput. Methods Appl. Mech. Eng. 279, 497–514 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cauchy, A.-L., Équations différentielles ordinaires. Éditions Études Vivantes, Ltée., Ville Saint-Laurent, QC; Johnson Reprint Corp., New York, Unpublished course. Fragment, With a preface by J. Dieudonné, With an introduction by C. Gilain (1981)

  19. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 43, pp. 50–67. Cambridge University Press (1947)

  21. Dahlquist, G., Liniger, W., Nevanlinna, O.: Stability of two-step methods for variable integration steps. SIAM J. Numer. Anal. 20(5), 1071–1085 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Degroote, J.: On the similarity between Dirichlet–Neumann with interface artificial compressibility and Robin–Neumann schemes for the solution of fluid–structure interaction problems. J. Comput. Phys. 230(17), 6399–6403 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Degroote, J., Bruggeman, P., Haelterman, R., Vierendeels, J.: Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86(23), 2224–2234 (2008)

    Article  Google Scholar 

  24. Deparis, S., Fernández, M., Formaggia, L.: Acceleration of a fixed point algorithm for fluid–structure interaction using transpiration conditions. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 37(4), 601–616 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Farhat, C., Van der Zee, K., Geuzaine, P.: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Eng. 195(17), 1973–2001 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Fernández, M.: Incremental displacement-correction schemes for incompressible fluid–structure interaction: stability and convergence analysis. Numer. Math. 123, 210–65 (2012)

    Google Scholar 

  27. Fernández, M., Landajuela, M.: A fully decoupled scheme for the interaction of a thin-walled structure with an incompressible fluid. C.R. Math. 351(3–4), 161–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fernández, M., Mullaert, J., Vidrascu, M.: Generalized Robin–Neumann explicit coupling schemes for incompressible fluid-structure interaction: stability analysis and numerics. Int. J. Numer. Methods Eng. 101(3), 199–229 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, vol. 1. Springer, Berlin (2010)

    MATH  Google Scholar 

  30. Gee, M., Küttler, U., Wall, W.: Truly monolithic algebraic multigrid for fluid–structure interaction. Int. J. Numer. Methods Eng. 85(8), 987–1016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gerardo-Giorda, L., Nobile, F., Vergara, C.: Analysis and optimization of Robin–Robin partitioned procedures in fluid–structure interaction problems. SIAM J. Numer. Anal. 48(6), 2091–2116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gerbeau, J.-F., Vidrascu, M.: A Quasi–Newton algorithm based on a reduced model for fluid–structure interaction problems in blood flows. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 37(4), 631–647 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gigante, G., Vergara, C.: On the stability of a loosely-coupled scheme based on a Robin interface condition for fluid–structure interaction (2019). arXiv:1905.06593

  34. Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, p. 749. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  35. Hansbo, P.: Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt. 28(2), 183–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Hron, J., Turek, S.: A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics. In: Fluid–Structure Interaction. volume 53 of Lecture Notes in Computational Science and Engineering, pp. 146–170. Springer, Berlin (2006)

  38. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations, vol. 33. Springer, Berlin (2013)

    MATH  Google Scholar 

  39. Langer, U., Yang, H.: Numerical simulation of fluid–structure interaction problems with hyperelastic models: a monolithic approach. Math. Comput. Simul. 145, 186–208 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lukáčová-Medvid’ová, M., Rusnáková, G., Hundertmark-Zaušková, A.: Kinematic splitting algorithm for fluid–structure interaction in hemodynamics. Comput. Methods Appl. Mech. Eng. 265, 83–106 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Muha, B., Čanić, S.: Existence of a solution to a fluid-multi-layered-structure interaction problem. J. Differ. Equ. 256(2), 658–706 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nobile, F.: Numerical approximation of fluid–structure interaction problems with application to haemodynamics. Ph.D. thesis, EPFL, Switzerland (2001)

  43. Nobile, F., Vergara, C.: An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30, 731–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Oyekole, O., Trenchea, C., Bukač, M.: A second-order in time approximation of fluid–structure interaction problem. SIAM J. Numer. Anal. 56(1), 590–613 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ryzhakov, P., Rossi, R., Idelsohn, S., Oñate, E.: A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46(6), 883–899 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Seboldt, A., Bukač, M.: A non-iterative domain decomposition method for the interaction between a fluid and a thick structure (2020). arXiv:2007.00781

  47. Serino, D., Banks, J., Henshaw, W., Schwendeman, D.: A stable added-mass partitioned (AMP) algorithm for elastic solids and incompressible flow: model problem analysis. SIAM J. Sci. Comput. 41(4), A2464–A2484 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stetter, H.: Analysis of Discretization Methods for Ordinary Differential Equations, vol. 23. Springer, Berlin (1973)

    MATH  Google Scholar 

  49. Yu, Y., Baek, H., Karniadakis, G.: Generalized fictitious methods for fluid–structure interactions: analysis and simulations. J. Comput. Phys. 245, 317–346 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF under Grants DMS 1912908 and DCSD 1934300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Bukač.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Gazzola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukač, M., Seboldt, A. & Trenchea, C. Refactorization of Cauchy’s Method: A Second-Order Partitioned Method for Fluid–Thick Structure Interaction Problems. J. Math. Fluid Mech. 23, 64 (2021). https://doi.org/10.1007/s00021-021-00593-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00593-z

Keywords

Mathematics Subject Classification

Navigation