Skip to main content
Log in

A scalable time–space multiscale domain decomposition method: adaptive time scale separation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the scalability of a time–space multiscale domain decomposition method in the framework of time-dependent nonlinear problems. The strategy which is being studied is the multiscale LATIN method, whose scalability was shown in previous works when the distinction between macro and micro parts is made on the spatial level alone. The objective of this work is to propose an explanation of the loss-of-scalability phenomenon, along with a remedy which guarantees full scalability provided a suitable macro time part is chosen. This technique, which is quite general, is based on an adaptive separation of scales which is achieved by adding the most relevant functions to the temporal macrobasis automatically. When this method is used, the numerical scalability of the strategy is confirmed by the examples presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alart P, Dureisseix D (2008) A scalable multiscale LATIN method adapted to nonsmooth discrete media. Comput Methods Appl Mech Eng 197: 319–331

    Article  MATH  Google Scholar 

  2. Belytschko T, Smolinski P, Liu WK (1985) Stability of multi-time step partitioned integrators for first-order finite element systems. Comput Methods Appl Mech Eng 49(3): 281–297

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62: 1442–1462

    Article  MATH  Google Scholar 

  4. Bottasso CL (2002) Multiscale temporal integration. Comput Methods Appl Mech Eng 191(25–26): 2815–2830

    Article  MATH  MathSciNet  Google Scholar 

  5. Boucard P-A, Champaney L (2003) A suitable computational strategy for the parametric analysis of problems with multiple contact. Int J Numer Methods Eng 57: 1259–1282

    Article  MATH  Google Scholar 

  6. Briggs WL (1987) A multigrid tutorial. Society for industrial and applied mathematics

  7. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7): 808–817

    Google Scholar 

  8. Chinesta F, Ammar A, Lemarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197: 400–413

    Article  MATH  MathSciNet  Google Scholar 

  9. Cognard J-Y, Ladevèze P (1993) A large time increment approach for cyclic plasticity. Int J Plast 9: 114–157

    Article  Google Scholar 

  10. Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191: 1129–1157

    Article  MATH  Google Scholar 

  11. Cresta P, Allix O, Rey C, Guinard S (2007) Nonlinear localization strategies for domain decomposition methods in structural mechanics. Comput Methods Appl Mech Eng 196: 1436–1446

    Article  MATH  MathSciNet  Google Scholar 

  12. Devries F, Dumontet F, Duvaut G, Léné F (1989) Homogenization and damage for composite structures. Int J Numer Methods Eng 27: 285–298

    Article  MATH  Google Scholar 

  13. Farhat C, Chandesris M (2003) Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications. Int J Numer Methods Eng 58: 1397–1434

    Article  MATH  MathSciNet  Google Scholar 

  14. Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32: 1205–1227

    Article  MATH  Google Scholar 

  15. Feyel F (2003) A multilevel finite element (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192: 3233–3244

    Article  MATH  Google Scholar 

  16. Fish J, Belsky V (1995) Multigrid method for periodic heterogeneous media. II. Multiscale modeling and quality control in multidimensional case. Comput Methods Appl Mech Eng 126(17–38)

    Google Scholar 

  17. Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148: 53–73

    Article  MATH  MathSciNet  Google Scholar 

  18. Gravouil A, Combescure A (2003) Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics. Int J Numer Methods Eng 58: 1545–1569

    Article  MATH  Google Scholar 

  19. Guennouni T (1988) On a computational method for cycling loading: the time homogenization. Math Model Numer Anal (in french) 22(3): 417–455

    MATH  MathSciNet  Google Scholar 

  20. Hughes TJR, Feijoo GR, Mazzei L, Quincy J-B (1998) The variarional multiscale—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166: 3–24

    Article  MATH  MathSciNet  Google Scholar 

  21. Ibrahimbegović A, Markovič D (2003) Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput Methods Appl Mech Eng 192: 3089–3108

    Article  MATH  Google Scholar 

  22. Kerfriden P, Allix O, Gosselet P (2009) A three-scale domain decomposition method for the 3D analysis of debonding in laminate. Comput Mech 44(3): 343–362

    Article  MATH  Google Scholar 

  23. Ladevèze P (1999) Nonlinear computationnal structural mechanics—new approaches and non-incremental methods of calculation. Springer, Berlin

    Google Scholar 

  24. Ladevèze P, Dureisseix D (2000) A micro/macro approch for parallel computing of heterogeneous structures. Int J Comput Civil Struct Eng 1: 18–28

    Google Scholar 

  25. Ladevèze P, Loiseau O, Dureisseix D (2001) A micro–macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Methods Eng 52: 121–138

    Article  Google Scholar 

  26. Ladevèze P, Lubineau G, Violeau D (2006) Computational damage micromodel of laminated composites. Int J Fract 137: 139–150

    Article  Google Scholar 

  27. Ladevèze P, Néron D, Passieux J-C (2009) On multiscale computational mechanics with time–space homogenization. In: Fish J (eds) Multiscale methods—bridging the scales in science and engineering, chapter: Space Time Scale Bridging methods. Oxford University Press, Oxford, pp 247–282

    Google Scholar 

  28. Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192: 3061–3087

    Article  MATH  Google Scholar 

  29. Ladevèze P, Nouy A, Loiseau O (2002) A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng 191: 4869–4891

    Article  MATH  Google Scholar 

  30. Ladevèze P, Passieux J-C, Néron D (2010) The LATIN multiscale computational method and the Proper Generalized Decomposition. Comput Methods Appl Mech Eng 199: 1287–1296

    Article  Google Scholar 

  31. Liang YC, Lee HP, Lim SP, Lin WZ, Lee KH, Wu CG (2002) Proper orthogonal decomposition and its applications. Part I. Theory. J Sound Vib 252(3): 527–544

    Article  MathSciNet  Google Scholar 

  32. Maday Y, Turinici G (2002) A parareal in time procedure for the control of partial differential equations. Comptes Rendus Académie des Sciences Paris I(335)(Issue 4):387–392

  33. Mandel J (1993) Balancing domain decomposition. Commun Numer Methods Eng 9(233–241)

    Google Scholar 

  34. Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 39: 289–314

    Article  Google Scholar 

  35. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Eng Sci 46: 131–150

    MATH  Google Scholar 

  36. Néron D, Dureisseix D (2008) A computational strategy for poroelastic problems with a time interface between coupling physics. Int J Numer Methods Eng 73(6): 783–804

    Article  Google Scholar 

  37. Nouy A (2007) A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Methods Appl Mech Eng 196(45-48): 4521–4537

    Article  MATH  MathSciNet  Google Scholar 

  38. Oden JT, Vemaganti K, Moës N (1999) Hierarchical modeling of heterogeneous solids. Comput Methods Appl Mech Eng 172: 3–25

    Article  MATH  Google Scholar 

  39. Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual domain decomposition method: application to structural problems with damage. Int J Multiscale Comput Eng 6(3): 251–262

    Article  Google Scholar 

  40. Sanchez-Palencia E (1980) Non homogeneous media and vibration theory. Lecture Notes in Physics, vol 127

  41. Strouboulis T, Coops K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190(32–33): 4081–4193

    Article  MATH  Google Scholar 

  42. Temizer I, Wriggers P (2007) An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput Methods Appl Mech Eng 196: 3409–3423

    Article  MATH  MathSciNet  Google Scholar 

  43. Yu Q, Fish J (2002) Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int J Solids Struct 39: 6429–6452

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Passieux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passieux, JC., Ladevèze, P. & Néron, D. A scalable time–space multiscale domain decomposition method: adaptive time scale separation. Comput Mech 46, 621–633 (2010). https://doi.org/10.1007/s00466-010-0504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0504-2

Keywords

Navigation