Skip to main content
Log in

A two-level method for sparse time-frequency representation of multiscale data

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Based on the recently developed data-driven time-frequency analysis (Hou and Shi, 2013), we propose a two-level method to look for the sparse time-frequency decomposition of multiscale data. In the two-level method, we first run a local algorithm to get a good approximation of the instantaneous frequency. We then pass this instantaneous frequency to the global algorithm to get an accurate global intrinsic mode function (IMF) and instantaneous frequency. The two-level method alleviates the difficulty of the mode mixing to some extent. We also present a method to reduce the end effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boashash B. Time-Frequency Signal Analysis: Methods and Applications. Melbourne-New York: Longman- Cheshire/John Wiley Halsted Press, 1992

    Google Scholar 

  2. Boyd J P. A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds. J Comput Phys, 2002, 178: 118–160

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev, 2009, 51: 34–81

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès E, Romberg J, Tao T. Robust uncertainty principles: Exact signal recovery from highly incomplete frequency information. IEEE Trans Inform Theory, 2006, 52: 489–509

    Article  MathSciNet  MATH  Google Scholar 

  5. Daubechies I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series on Applied Mathematics, vol. 61. Philadelphia: SIAM, 1992

    Book  MATH  Google Scholar 

  6. Daubechies I, Lu J, Wu H. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl Comput Harmon Anal, 2011, 30: 243–261

    Article  MathSciNet  MATH  Google Scholar 

  7. Daubechies I, Wang Y, Wu H. ConceFT: Concentration of frequency and time via a multitapered synchrosqueezed transform. Philos Trans A Math Phys Eng Sci, 2016, 374: 20150193

    Article  MathSciNet  MATH  Google Scholar 

  8. Donoho D L. Compressed sensing. IEEE Trans Inform Theory, 2006, 52: 1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  9. Flandrin P. Time-Frequency/Time-Scale Analysis. San Diego: Academic Press, 1999

    MATH  Google Scholar 

  10. Gabor D. Theory of communication. J IEEE, 1946, 93: 426–457

    Google Scholar 

  11. Gribonval R, Nielsen M. Sparse representations in unions of bases. IEEE Trans Inform Theory, 2003, 49: 3320–3325

    Article  MathSciNet  MATH  Google Scholar 

  12. Gross R S. Combinations of Earth Orientation Measurements: SPACE2000, COMB2000, and POLE2000. JPL Publication 1–2. Pasadena: Jet Propulsion Laboratory, 2000

    Google Scholar 

  13. Hou T Y, Shi Z. Adaptive data analysis via sparse time-frequency representation. Adv Adapt Data Anal, 2011, 3: 1–28

    Article  MathSciNet  MATH  Google Scholar 

  14. Hou T Y, Shi Z. Data-drive time-frequency analysis. Appl Comput Harmonic Anal, 2013, 35: 284–308

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou T Y, Shi Z. Sparse time-frequency representation of nonlinear and nonstationary data. Sci China Math, 2013, 56: 2489–2506

    Article  MATH  Google Scholar 

  16. Hou T Y, Shi Z. Sparse time-frequency decomposition by dictionary adaptation. Philos Trans A Math Phys Eng Sci, 2016, 374: 20150194

    Article  MATH  Google Scholar 

  17. Hou T Y, Shi Z, Tavallali P. Convergence of a data-driven time-frequency analysis method. Appl Comput Harmonic Anal, 2014, 37: 235–270

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang N E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci, 1998, 454: 903–995

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang N E, Daubechies I, Hou TY. Adaptive data analysis: Theory and applications. Philos Trans A Math Phys Eng Sci, 2016, 374: 20150207

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang N E, Wu Z. A review on Hilbert-Huang Transform: The method and its applications on geophysical studies. Rev Geophys, 2008, 46: RG2006

    Article  Google Scholar 

  21. Huybrechs D. On the Fourier extension of non periodic functions. SIAM J Numer Anal, 2010, 47: 4326–4355

    Article  MathSciNet  MATH  Google Scholar 

  22. Jomes D L, Parks T W. A high resolution data-adaptive time-frequency representation. IEEE Trans Acoust Speech Signal Process, 1990, 38: 2127–2135

    Article  Google Scholar 

  23. Liu C G, Shi Z Q, Hou T Y. On the uniqueness of sparse time-frequency representation of multiscale data. Multiscale Model Simul, 2015, 13: 790–811

    Article  MathSciNet  MATH  Google Scholar 

  24. Loughlin P J, Tracer B. On the amplitude- and frequency-modulation decomposition of signals. J Acoust Soc Amer, 1996, 10: 1594–1601

    Article  Google Scholar 

  25. Lovell B C, Williamson R C, Boashash B. The relationship between instantaneous frequency and time-frequency representations. J Acoust Soc Amer, 1993, 41: 1458–1461

    MATH  Google Scholar 

  26. Mallat S. A Wavelet Tour of Signal Processing: The Sparse Way. San Diego: Academic Press, 2009

    MATH  Google Scholar 

  27. Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Trans Signal Process, 1993, 41: 3397–3415

    Article  MATH  Google Scholar 

  28. Meville W K. Wave modulation and breakdown. J Fluid Mech, 1983, 128: 489–506

    Article  Google Scholar 

  29. Needell D, Tropp J. CoSaMP: Iterative signal recovery from noisy samples. Appl Comput Harmon Anal, 2008, 26: 301–321

    Article  MATH  Google Scholar 

  30. Olhede S, Walden A T. The Hilbert spectrum via wavelet projections. Proc R Soc Lond Ser A Math Phys Eng Sci, 2004, 460: 955–975

    Article  MathSciNet  MATH  Google Scholar 

  31. Picinbono B. On instantaneous amplitude and phase signals. IEEE Trans Signal Process, 1997, 45: 552–560

    Article  Google Scholar 

  32. Qian S, Chen D. Joint Time-Frequency Analysis: Methods and Applications. Upper Saddle River: Prentice Hall, 1996

    Google Scholar 

  33. Rice S O. Mathematical analysis of random noise. Bell Syst Tech J, 1944, 23: 282–310

    Article  MathSciNet  MATH  Google Scholar 

  34. Shekel J. Instantaneous frequency. Proc IRE, 1953, 41: 548

    Article  Google Scholar 

  35. Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theory, 2007, 53: 4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  36. Van der Pol B. The fundamental principles of frequency modulation. Proc IEEE, 1946, 93: 153–158

    MathSciNet  Google Scholar 

  37. Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv Adapt Data Anal, 2009, 1: 1–41

    Article  Google Scholar 

  38. Wu Z, Huang N E, Chen X. The multi-dimensional ensemble empirical mode decomposition method. Adv Adapt Data Anal, 2009, 1: 339–372

    Article  MathSciNet  Google Scholar 

  39. Wu Z, Huang N E, Long S R, et al. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA, 2007, 104: 14889–14894

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of USA (Grants Nos. DMS-1318377 and DMS-1613861) and National Natural Science Foundation of China (Grant Nos. 11371220, 11671005, 11371173, 11301222 and 11526096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Yizhao Hou.

Additional information

Dedicated to Professor LI TaTsien on the Occasion of His 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Shi, Z. & Hou, T.Y. A two-level method for sparse time-frequency representation of multiscale data. Sci. China Math. 60, 1733–1752 (2017). https://doi.org/10.1007/s11425-016-9088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9088-9

Keywords

MSC(2010)

Navigation