Skip to main content
Log in

An adaptive FE–MD model coupling approach

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This contribution introduces an adaptively coupled finite element (FE)–molecular dynamics (MD) model based on the Quasicontinuum (QC) method. The idea for obtaining constitutive laws from the underlying lattice structure (local QC model) will be discussed in detail. The outline of the formulation for the quasi-static MD model (nonlocal QC model) will also be derived in the same mathematical structure. A new type of element is proposed to solve the boundary problems and to couple the FE and MD models. The interpolation techniques for the atomic stress and strain fields are introduced. A two-step adaptive mechanism is applied to the multiscale model, including the mesh refinement step for the FE model and the FE–MD conversion step. A 3D nanoindentation example is used for demonstrating accuracy and the efficiency of the coupled FE–MD model at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashby M, Jones D (1996) Engineering materials 1: an introduction to their properties & applications, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Babuska I, Melenk J (1998) The partition of unity method. Int J Numer Methods Eng 40: 727–758

    Article  MathSciNet  Google Scholar 

  3. Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, Oxford

    MATH  Google Scholar 

  4. Cormier J, Rickman J, Delph T (2001) Stress calculation in atomistic simulations of perfect and imperfect solids. J Appl Phys 89: 99–104

    Article  Google Scholar 

  5. Daw M, Baskes M (1984) Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29: 6443–6453

    Article  Google Scholar 

  6. de Graef M, McHenry M (2007) Structure of materials. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Dobson M, Elliott R, Luskin M, Tadmor E (2007) A multilattice quasicontinuum for phase transforming materials: Cascading cauchy born kinematics. J Comput Aided Mater Des 14: 219–237

    Article  Google Scholar 

  8. Dobson M, Elliott R, Tadmor E (2006) A quasicontinuum for complex crystals. In: Proceedings of the Third International Conference on Multiscale Materials Modeling

  9. Dupuy L, Tadmor E, Miller R, Phillips R (2005) Finite temperature quasicontinuum: molecular dynamics without all the atoms. Phys Rei Lett 95: 060202

    Article  Google Scholar 

  10. Eidel B, Stukowski A (2009) A variational formulation of the quasicontinuum method based on energy sampling in clusters. J Mech Phys Solids 57: 87–108

    Article  MATH  MathSciNet  Google Scholar 

  11. Ercolesssi F, Adams J (1994) Interatomic potentials from first-principles calculations: the force-matching method. Europhys Lett 26: 583–588

    Article  Google Scholar 

  12. Fago M, Hayes R, Carter E, Ortiz M (2004) Density-functional-theory-based local quasicontinuum method: prediction of dislocation nucleation. Phys Rei B 70: 100102(R)

    Google Scholar 

  13. Feyel F (2003) A multilevel finite element method (fe2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192: 3233–3244

    Article  MATH  Google Scholar 

  14. Fish J (2006) Bridging the scales in nano engineering and science. J Nanoparticle Res 8: 577–594

    Article  Google Scholar 

  15. Fish J, Nuggehally M, Shephard M, Picu C, Badia S, Park M, Gunzburger M (2007) Concurrent atc coupling based on a blend of the continuum stress and the atomistic force. Comput Methods Appl Mech Eng 196: 4548–4560

    Article  MATH  Google Scholar 

  16. Gnecco E, Meyer E (2007) Fundamentals of friction and wear on the nanoscale. Springer, Berlin

    Book  Google Scholar 

  17. Gross D, Seelig T (2006) Fracture mechanics. Springer, Berlin

    MATH  Google Scholar 

  18. Hardy R (1982) Formulas for determing local properties in molecular-dynamics simulations: shock waves. J Chem Phys 76: 622–628

    Article  Google Scholar 

  19. Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    MATH  Google Scholar 

  20. Holzmann M, Man J, Vlach B (1992) Comparison of fracture toughness temperature curves determined at impact and rapid loading on small and large specimens. Mater Sci 28: 255–259

    Article  Google Scholar 

  21. Jin J, Shevlin S, Guo Z (2008) Multiscale simulation of onset plasticity during nanoindentation of al(0 0 1) surface. Acta Mater 56: 4358–4368

    Article  Google Scholar 

  22. Kamm G, Alers G (1964) Low-temperature elastic moduli of aluminium. J Appl Phys 35: 327–330

    Article  Google Scholar 

  23. Kitamura T, Umeno Y, Tsuji N (2004) Analytical evaluation of unstable deformation criterion of atomic structure and its application to nanostructure. Comput Mater Sci 29: 499–510

    Article  Google Scholar 

  24. Lennard-Jones J (1931) Cohesion. Proc Phys Soc 43: 461–482

    Article  MATH  Google Scholar 

  25. Li J, Vliet K, Zhu T, Yip S, Suresh S (2002) Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418: 307–310

    Article  Google Scholar 

  26. Liu X, Ercolessi F, Adams J (2004) Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy. Model Simul Mater Sci Eng 12: 665–670

    Article  Google Scholar 

  27. Lu G, Tadmor E, Kaxiras E (2006) From electrons to finite elements: a concurrent multiscale approach for metals. Phys Rev B 73: 024108

    Article  Google Scholar 

  28. Luan B, Robbins M (2005) The breakdown of continuum models for mechanical contacts. Nat Lett 435: 929–932

    Article  Google Scholar 

  29. Lutsko J (1988) Stress and elastic constants in anisotropic solids: molecular dynamics techniques. J Appl Phys 64: 1152–1154

    Article  Google Scholar 

  30. Miller R, Tadmor E (2002) The quasicontinuum method: Overview, applications and current directions. J Comput Aided Mater Des 9: 203–239

    Article  Google Scholar 

  31. Miller R, Tadmor E (2009) A unified framework and performance benchmark of fourteen multsicale/continuum coupling methods. Model Simul Mater Sci Eng 17: 1–51

    Article  Google Scholar 

  32. Parvazinia M, Nassehi V, Wakeman R (2006) Multi-scale finite element modelling using bubble function method for a convection-diffusion problem. Chem Eng Sci 61: 2742–2751

    Article  Google Scholar 

  33. Qu S, Shastry V, Curtin W, Miller R (2005) A finite-temperature dynamic coupled atomistic/discrete dislocation method. Model Simul Mater Sci Eng 13: 1101–1118

    Article  Google Scholar 

  34. Rapaport D (2004) The art of molecular dynamics simulation, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Rodney D, Phillips R (1999) Structure and strength of dislocation junctions: an atomic level analysis. Phys Rev Lett 82: 1704–1707

    Article  Google Scholar 

  36. Schmidt A, Siebert K (2005) Design of adaptive finite element software. Springer, Berlin

    MATH  Google Scholar 

  37. Shenoy V, Miller R, Tadmor E, Phillips R, Ortiz M (1998) Quasicontinuum models of interfacial structure and deformation. Phys Rev Lett 80: 742–745

    Article  Google Scholar 

  38. Shiari B, Miller R, Curtin W (2005) Coupled atomistic/discrete dislocation simulations of nanoindentation at finite temperature. J Eng Mater Technol 127: 358–368

    Article  Google Scholar 

  39. Tadmor E, Miller R (2005) Handbook of materials modeling, part A:2. In: The theory and implementation of the quasicontinuum method. Springer, Netherlands, pp 663–682

  40. Tadmor E, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73: 1529–1563

    Article  Google Scholar 

  41. Tadmor E, Phillips R (1996) Mixed atomistic and continuum models of deformation solids. Langmuir 12: 4529–4534

    Article  Google Scholar 

  42. Wang C, Jian S, Jang J, Lai Y, Yang P (2008) Multiscale simulation of nanoindentation on ni(1 0 0) thin film. Appl Surf Sci 255: 3240–3250

    Article  Google Scholar 

  43. Xiao S, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193: 1645–1669

    Article  MATH  MathSciNet  Google Scholar 

  44. Yang C, Tartaglino U, Persson B (2006) A multiscale molecular dynamics approach to contact mechanics. Eur Phys J E Soft Matter Biol Phys 19: 47–58

    Article  Google Scholar 

  45. Yonenaga I, Motoki K (2001) Yield strength and dislocation mobility in plastically deformed bulk single-crystal gan. J Appl Phys 90: 6539–6541

    Article  Google Scholar 

  46. Zimmerman J, Webb E III, Hoyt J, Jones R, Klein P, Bammann D (2004) Calculation of stress in atomistic simulation. Model Simul Mater Sci Eng 12: S319–S332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhe Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, W., Nackenhorst, U. An adaptive FE–MD model coupling approach. Comput Mech 46, 577–596 (2010). https://doi.org/10.1007/s00466-010-0503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0503-3

Keywords

Navigation