Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Computational Mechanics
  3. Article
Computational fluid–structure interaction: methods and application to a total cavopulmonary connection
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application

10 June 2021

Zhenglun Alan Wei & Mark A. Fogel

Fluid–structure interaction in a fully coupled three-dimensional mitral–atrium–pulmonary model

26 March 2021

Liuyang Feng, Hao Gao, … Xiaoyu Luo

A Tribute to Ajit Yoganathan's Cardiovascular Fluid Mechanics Lab: A Survey of Its Contributions to Our Understanding of the Physiology and Management of Single-Ventricle Patients

20 May 2021

Peter E. Hammer, David M. Hoganson & Pedro J. del Nido

Non-Newtonian Effects on Patient-Specific Modeling of Fontan Hemodynamics

05 May 2020

Zhenglun Wei, Shelly Singh-Gryzbon, … Ajit P. Yoganathan

The Effect of an Implanted Filter on Valsalva-Compression and Respiratory-Compression of the Inferior Vena Cava

11 August 2021

Attila Kossa & Robert M. McMeeking

Analysis of Inlet Velocity Profiles in Numerical Assessment of Fontan Hemodynamics

24 June 2019

Zhenglun Alan Wei, Connor Huddleston, … Ajit P. Yoganathan

A design-based model of the aortic valve for fluid-structure interaction

21 September 2021

Alexander D. Kaiser, Rohan Shad, … Alison L. Marsden

Impact of Pulmonary Venous Inflow on Cardiac Flow Simulations: Comparison with In Vivo 4D Flow MRI

24 October 2018

Jonas Lantz, Vikas Gupta, … Tino Ebbers

Effects of Uncertainty of Outlet Boundary Conditions in a Patient-Specific Case of Aortic Coarctation

24 August 2021

Maria Nicole Antonuccio, Alessandro Mariotti, … Simona Celi

Download PDF
  • Original Paper
  • Open Access
  • Published: 24 September 2009

Computational fluid–structure interaction: methods and application to a total cavopulmonary connection

  • Yuri Bazilevs1,
  • M.-C. Hsu1,
  • D. J. Benson1,
  • S. Sankaran2 &
  • …
  • A. L. Marsden2 

Computational Mechanics volume 45, pages 77–89 (2009)Cite this article

  • 2446 Accesses

  • 189 Citations

  • Metrics details

Abstract

The Fontan procedure is a surgery that is performed on single-ventricle heart patients, and, due to the wide range of anatomies and variations among patients, lends itself nicely to study by advanced numerical methods. We focus on a patient-specific Fontan configuration, and perform a fully coupled fluid–structure interaction (FSI) analysis of hemodynamics and vessel wall motion. To enable physiologically realistic simulations, a simple approach to constructing a variable-thickness blood vessel wall description is proposed. Rest and exercise conditions are simulated and rigid versus flexible vessel wall simulation results are compared. We conclude that flexible wall modeling plays an important role in predicting quantities of hemodynamic interest in the Fontan connection. To the best of our knowledge, this paper presents the first three-dimensional patient-specific fully coupled FSI analysis of a total cavopulmonary connection that also includes large portions of the pulmonary circulation.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MATH  Google Scholar 

  2. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MATH  MathSciNet  Google Scholar 

  4. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2009.04.015

  5. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen JG (2009) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech, In the same issue

  6. Bischoff M, Wall WA, Bletzinger K-U, Ramm E (2004) Models and finite elements for thin-walled structures. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 2, Solids, structures and coupled problems, chap 3. Wiley

  7. Bove EL, de Leval MR, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126: 1040–1047

    Article  Google Scholar 

  8. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60: 371–375

    Article  MATH  MathSciNet  Google Scholar 

  9. de Leval MR, Dubini G, Migliavacca F, Jalali H, camporini G, Redington A, Pietrabissa R (1996) Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J Thorac Cardiovasc Surg 111(3): 502–513

    Article  Google Scholar 

  10. Dubini G, de Leval MR, Pietrabissa R, Montevecchi FM, Fumero R (1996) A numerical fluid mechanical study of repaired congenital heart defects: application to the total cavopulmonary connection. J Biomech 29(1): 111–121

    Article  Google Scholar 

  11. Ensley AE, Ramuzat A, Healy TM, Chatzimavroudis GP, Lucas C, Sharma S, Pettigrew R, Yoganathan AP (2000) Fluid mechanic assessment of the total cavopulmonary connection using magnetic resonance phase velocity mapping and digital particle image velocimetry. Ann Biomed Eng 28: 1172–1183

    Article  Google Scholar 

  12. Farhat C, Geuzaine P, Grandmont C (2001) The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J Comput Phys 174(2): 669–694

    Article  MATH  MathSciNet  Google Scholar 

  13. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26: 240–248

    Article  Google Scholar 

  14. Giardini A, Balducci A, Specchia S, Gaetano G, Bonvicini M, Picchio FM (2008) Effect of sildenafil on haemodynamic response to exercise capacity in fontan patients. Eur Heart J 29: 1681–1687

    Article  Google Scholar 

  15. Hjortdal VE, Emmertsen K, Stenbog E, Frund T, Rahbek Schmidt M, Kromann O, Sorensen K, Pedersen EM (2003) Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 108: 1227–1231

    Article  Google Scholar 

  16. Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  17. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola

    Google Scholar 

  18. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian- Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349

    Article  MATH  MathSciNet  Google Scholar 

  19. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178

    Article  Google Scholar 

  20. Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319

    Article  MathSciNet  Google Scholar 

  21. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94

    Article  MATH  Google Scholar 

  22. Khunatorn Y, Mahalingam S, DeGroff CG, Shandas R (2002) Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. J Biomech Eng Trans ASME 124: 364–377

    Article  Google Scholar 

  23. Kulik TJ, Bass JL, Fuhrman BP, Moller JH, Lock JE (1983) Exercise induced pulmonary vasoconstriction. Br Heart J 50: 59–64

    Article  Google Scholar 

  24. Marsden AL, Vignon-Clementel IE, Chan F, Feinstein JA, Taylor CA (2007) Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng 35(2): 250–263

    Article  Google Scholar 

  25. Marsden AL, Bernstein AD, Reddy VM, Shadden S, Spilker R, Chan FP, Taylor CA, Feinstein JA (2009) Evaluation of a novel Y-shaped extracardiac fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg, To appear

  26. Marsden AL, Vignon-Clementel IE, Chan F, Feinstein JA, Taylor CA (2007) Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng 35: 250–263

    Article  Google Scholar 

  27. Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan A, Lucas CL (2004) The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (tcpc) with caval centerline offset. J Biomech Eng 126: 709–713

    Article  Google Scholar 

  28. Migliavacca F, Dubini G, Bove EL, de Leval MR (2003) Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J Biomech Eng 125: 805–813

    Article  Google Scholar 

  29. Migliavacca F, Dubini G, Pietrabissa R, de Leval MR (1997) Computational transient simulations with varying degree and shape of pulmonic stenosis in models of the bidirectional cavopulmonary anastomosis. Med Eng Phys 19: 394–403

    Article  Google Scholar 

  30. Pedersen EM, Stenbog EV, Frund T, Houlind K, Kromann O, Sorensen KE, Emmertsen K, Hjortdal VE (2002) Flow during exercise in the total cavopulmonary connection measured by magnetic resonance velocity mapping. Heart 87: 554–558

    Article  Google Scholar 

  31. Petrossian E, Reddy VM, Collins KK, Culbertson CB, MacDonald MJ, Lamberti JJ, Reinhartz O, Mainwaring RD, Francis PD, Malhotra SP, Gremmels DB, Suleman S, Hanley FL (2006) The extracardiac conduit Fontan operation using minimal approach extracorporeal circulation: early and midterm outcomes. J Thorac Cardiovasc Surg 132(5): 1054–1063

    Article  Google Scholar 

  32. Sahni O, Muller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Appl Mech Eng 195: 5634–5655

    Article  MATH  MathSciNet  Google Scholar 

  33. Shachar GB, Fuhrman BP, Wang Y, Lucas RV Jr, Lock JE (1982) Rest and exercise hemodynamics after the fontan procedure. Circulation 65: 1043–1048

    Google Scholar 

  34. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63

    Article  MATH  Google Scholar 

  35. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032

    Article  MATH  Google Scholar 

  36. Takizawa K, Christopher J, Moorman C, Martin J, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2009) Space-time finite element computation of arterial FSI with patient-specific data. In: Schrefler B, Onate E, Papadrakakis M (eds) Computational methods for coupled problems in science and engineering, coupled problems 2009

  37. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2009) Space-time finite element computation of arterial fluid–structure interactions with patient-specific data. Commun Numer Methods Eng, published online. doi:10.1002/cnm.1241

  38. Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26: 27–36

    Article  Google Scholar 

  39. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575

    Article  MATH  MathSciNet  Google Scholar 

  40. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the stabilized finite element methods—space-time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol. 246/ AMD-Vol. 143, pp 7–24. ASME, New York

  41. Tezduyar TE, Sathe S (2007) Modelling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900

    Article  MATH  MathSciNet  Google Scholar 

  42. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modelling of fluid–structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922

    Article  MATH  MathSciNet  Google Scholar 

  43. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027

    Article  MATH  MathSciNet  Google Scholar 

  44. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space-time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629

    Article  MATH  MathSciNet  Google Scholar 

  45. Tezduyar TE, Schwaab M, Sathe S (2008) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng, published online. doi:10.1016/j.cma.2008.05.024

  46. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Methods Appl Mech Eng 195: 1885–1895

    Article  MATH  MathSciNet  Google Scholar 

  47. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490

    Article  MATH  Google Scholar 

  48. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159

    Article  MATH  Google Scholar 

  49. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Commun Numer Methods Eng, published online. doi:10.1002/cnm.1289

  50. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195: 3776–3796

    Article  MATH  MathSciNet  Google Scholar 

  51. Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen JG (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid–structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42: 131–149

    Google Scholar 

Download references

Acknowledgments

We wish to thank the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. Support of Teragrid Grant No.MCAD7S032 is gratefully acknowledged. Alison Marsden was supported by a Burroughs Wellcome Fund Career Award at the Scientific Interface, and by an American Heart Association Beginning Grant in Aid award.We would also like to thank Jeff Feinstein for his valuable input on the clinical relevance of the reported simulations.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, nand reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA

    Yuri Bazilevs, M.-C. Hsu & D. J. Benson

  2. Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA

    S. Sankaran & A. L. Marsden

Authors
  1. Yuri Bazilevs
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. M.-C. Hsu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. D. J. Benson
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. S. Sankaran
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. A. L. Marsden
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yuri Bazilevs.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Bazilevs, Y., Hsu, MC., Benson, D.J. et al. Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45, 77–89 (2009). https://doi.org/10.1007/s00466-009-0419-y

Download citation

  • Received: 09 August 2009

  • Accepted: 08 September 2009

  • Published: 24 September 2009

  • Issue Date: December 2009

  • DOI: https://doi.org/10.1007/s00466-009-0419-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Blood flow
  • Fontan surgery
  • Fluid–structure interaction
  • Variable wall thickness
  • Hyperelasticity
  • Wall shear stress
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.