Skip to main content
Log in

An enhanced FSDT model for the calculation of interlaminar shear stresses in composite plate structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper a procedure is proposed to calculate the interlaminar shear stresses in layered composite plates. The transverse shear stresses are obtained via the constitutive law and derivatives of some warping functions. For 4-node elements the derivatives of curvatures and strains of the reference surface with respect to the in-plane coordinates are determined through a system of four equations. Hence the equilibrium equations lead to a coupled system of ordinary differential equations, which are solved applying a displacement method. The resulting interlaminar shear stresses are continuous at the layer boundaries. The quality of the obtained results is demonstrated within several plate examples with symmetric and unsymmetric lay-ups. Comparisons with two other approaches using 9-node elements and a solid shell formulation together with a three-dimensional material law show good accuracy and efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auricchio F, Sacco E (1999) A mixed-enhanced finite-element for the analysis of laminated composite plates. Int J Numer Methods Eng 44: 1481–1504

    Article  MATH  Google Scholar 

  2. Rohwer K (1992) Application of higher order theories to the bending analysis of layered composite plates. Int J Solids Struct 29: 105–119

    Article  MATH  Google Scholar 

  3. Degenhardt R, Rolfes R, Zimmermann R, Rohwer K (2006) COCOMAT-improved MATerial exploitation at safe design of COmposite airframe structures by accurate simulation of COllapse. Compos Struct 73: 175–178

    Article  Google Scholar 

  4. Mittelstedt C, Becker W (2004) Interlaminar stress concentrations in layered structures, Part I: A selective literature survey on the free-edge effect since 1967. J Compos Mater 38: 1037–1062

    Article  Google Scholar 

  5. Marimuthu R, Sundaresan MK, Rao GV (2003) Estimation of interlaminar stresses in laminated plates subjected to transverse loading using three-dimensional mixed finite element formulation the Institution of Engineers(India). Technical J Aerosp Eng 84: 1–8

    Google Scholar 

  6. Klinkel S, Gruttmann F, Wagner W (1999) A continuum based 3D-shell element for laminated structures. Comput Struct 71: 43–62

    Article  Google Scholar 

  7. Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comp Meth Appl Mech Eng 195: 179–201

    Article  MATH  Google Scholar 

  8. Reddy JN (1987) A generalization of two-dimensional theories of laminated plates. Commun Appl Numer Methods 3: 173–180

    Article  MATH  Google Scholar 

  9. Chaudhuri RA (1986) An equilibrium method for prediction of transverse shear stresses in a thick laminated plate. Comput Struct 23: 139–146

    Article  Google Scholar 

  10. Carrera E (1996) C 0 Reissner-Mindlin multilayered plate elements including Zig-Zag and interlaminar stress continuity. Int J Numer Methods Eng 39: 1797–1820

    Article  MATH  Google Scholar 

  11. Brank B, Carrera E (2000) Multilayered shell finite element with interlaminar continuous shear stresses: a refinement of the Reissner-Mindlin formulation. Int J Num Meth Eng 48: 843–874

    Article  MATH  Google Scholar 

  12. Carrera E (2003) Historical review of Zig-Zag theories for multilayered plates and shells. Appl Mech Rev 56: 237–308

    Article  Google Scholar 

  13. Gruttmann F, Wagner W, Meyer L, Wriggers P (1993) A nonlinear composite shell element with continuous interlaminar stresses. Comput Mech 13: 175–188

    Article  MATH  Google Scholar 

  14. Gruttmann F, Wagner W (1994) On the numerical analysis of local effects in composite structures. Compos Struct 29: 1–12

    Article  Google Scholar 

  15. Gruttmann F, Wagner W (1996) Coupling of 2D- and 3D- composite shell elements in linear and nonlinear applications. Comp Meth Appl Mech Eng 129: 271–287

    Article  MATH  Google Scholar 

  16. Gruttmann F, Wagner W (1996) Delamination analysis of thin composite structures using a multi-director formulation. In: Topping BHV (eds) Advances in analysis and design. Civil-Comp. Press, Edinburgh, pp 51–59

    Google Scholar 

  17. Robbins DH, Reddy JN (1993) Modelling of thick composites using a layerwise laminate theory. Int J Numer Meth Eng 36: 655–677

    Article  MATH  Google Scholar 

  18. Reddy JN (1984) A simple high-order theory for laminated composite plates. J Appl Mech 51: 745–752

    Article  MATH  Google Scholar 

  19. Engblom JJ, Ochoa OO (1985) Through-the-thickness stress distribution for laminated plates of advanced composite materials. Int J Num Meth Eng 21: 1759–1776

    Article  MATH  Google Scholar 

  20. Reddy JN (1989) On refined computational models of composite laminates. Int J Num Meth Eng 27: 361–382

    Article  MATH  Google Scholar 

  21. Rao KM, Meyer-Piening HR (1990) Analysis of thick laminated anisotropic composite plates by the finite element method. Compos Struct 15: 185–213

    Article  Google Scholar 

  22. Topdar P, Sheikh AH, Dhang N (2003) Finite element analysis of composite and sandwich plates using a continuous interlaminar shear stress model. J Sandwich Struct Mater 5: 207–231

    Article  Google Scholar 

  23. Noor AK, Burton WS, Peters JM (1990) Predictor-corrector procedure for stress and free vibration analyses of multilayered composite plates and shells. Comput Meth Appl Mech Eng 82: 341–364

    Article  MATH  Google Scholar 

  24. Noor AK, Kim YH, Peters JM (1994) Transverse shear stresses and their sensitivity coefficients in multilayered composite panels. AlAA J 32: 1259–1269

    Google Scholar 

  25. Manjunatha BS, Kant T (1994) On evaluation of transverse stresses in layered symmetric composite and sandwich laminates under flexure. Eng Comput 10: 499–518

    Google Scholar 

  26. Rolfes R, Rohwer K (1997) Improved transverse shear stresses in composite finite elements based on first order shear deformation theory. Int J Num Meth Eng 40: 51–60

    Article  Google Scholar 

  27. Gruttmann F, Taylor RL (1992) Theory and finite element formulation of rubberlike membrane shells using principal stretches. Int J Numer Meth Eng 35: 1111–1126

    Article  MATH  Google Scholar 

  28. Gruttmann F, Wagner W (2006) Structural analysis of composite laminates using a mixed hybrid shell element. Comput Mech 37: 479–497

    Article  MATH  Google Scholar 

  29. Taylor RL, Feap-manual. http://www.ce.berkeley/~rlt/feap/manual.pdf

  30. Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. J Future Gener Comput Syst 20(3): 475–487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schürg, M., Wagner, W. & Gruttmann, F. An enhanced FSDT model for the calculation of interlaminar shear stresses in composite plate structures. Comput Mech 44, 765–776 (2009). https://doi.org/10.1007/s00466-009-0410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0410-7

Keywords

Navigation