Skip to main content
Log in

Insight into a model for large strain anisotropic elasto-plasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Efficient and accurate simulation of the deformations in anisotropic metallic sheets requires a constitutive model and an accompanying algorithm at large strains which take into account the anisotropy of both the elastic and plastic material behaviors, as well as their evolution with plastic strains. Recently we proposed such a constitutive model based on continuum energy considerations, the Lee decomposition and an anisotropic stored energy function of the logarithmic strains in which the rotation of the orthotropic axes is also considered. We obtained a framework similar to the one used in isotropic elasto-plasticity. In the present work we give some physical insight into the parameters of the model and their effects on the predictions, both in proportional and in non-proportional loading problems. We also present a procedure to obtain the spin parameter of the model from Lankford R-values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    Google Scholar 

  2. Bathe KJ (2009) The finite element method. In: Wah B (eds) Encyclopedia of computer science and engineering. Wiley, London, pp 1253–1264

    Google Scholar 

  3. Kojić M, Bathe KJ (2005) Inelastic analysis of solids and structures. Springer, Berlin

    Google Scholar 

  4. Bathe KJ, Montáns FJ (2004) On modeling mixed hardening in computational plasticity. Comp Struct 82: 535–539

    Article  Google Scholar 

  5. Eterović AL, Bathe KJ (1990) A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using logarithmic stress and strain measures. Int J Num Meth Eng 30: 1099–1115

    Article  MATH  Google Scholar 

  6. Montáns FJ, Bathe KJ (2005) Computational issues in large strain elastoplasticity: an algorithm for mixed hardening and plastic spin. Int J Num Meth Eng 63: 159–196

    Article  MATH  Google Scholar 

  7. Lee EH (1967) Elastic-plastic deformations at finite strains. J Appl Mech 36: 1–6

    Google Scholar 

  8. Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic hyperelastic- viscoelastic solids. Comp Meth Appl Mech Eng 79: 173–202

    Article  MATH  Google Scholar 

  9. Montáns FJ, Bathe KJ (2007) Towards a model for large strain anisotropic elasto-plasticity. In: Oñate E, Owen R (eds) Computational plasticity. Springer, Berlin, pp 13–36

    Google Scholar 

  10. Bathe KJ, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Num Meth Eng 9: 353–386

    Article  MATH  Google Scholar 

  11. Snyder MD, Bathe KJ (1981) A solution procedure for thermo-elastic-plastic and creep problems. J Nucl Eng Des 64: 49–80

    Article  Google Scholar 

  12. Simó JC, Ortiz M (1985) A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations. Comp Meth Appl Mech Eng 49: 221–245

    Article  MATH  Google Scholar 

  13. Simó JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  14. Kojić M, Bathe KJ (1987) Studies of finite element procedures—Stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation. Comp Struct 26: 175–179

    Article  MATH  Google Scholar 

  15. Gabriel G, Bathe KJ (1995) Some computational issues in large strain elasto-plastic analysis. Comp Struct 56: 249–267

    Article  MATH  Google Scholar 

  16. Anand L (1979) On H. Hencky’s approximate strain-energy function for moderate deformations. J Appl Mech ASME 46: 78–82

    MATH  Google Scholar 

  17. Anand L (1986) Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J Mech Phys Solids 34: 293–304

    Article  Google Scholar 

  18. Papadopoulus P, Lu J (1998) A general framework for the numerical solution of problems in finite elasto-plasticity. Comp Meth Appl Mech Eng 159: 1–18

    Article  Google Scholar 

  19. Miehe C, Apel N, Lambrecht M (2002) Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comp Meth Appl Mech Eng 191: 5383–5425

    Article  MATH  MathSciNet  Google Scholar 

  20. Eidel B, Gruttmann F (2003) On the theory and numerics of orthotropic elastoplasticity at finite plastic strains. In: Bathe KJ (eds) Computational fluid and solid mechanics. Elsevier, Oxford, pp 246–248

    Google Scholar 

  21. Han CS, Choi Y, Lee JK, Wagoner RH (2002) A FE formulation for elasto-plastic materials with planar anisotropic yield functions and plastic spin. Int J Solids Struct 39: 5123–5141

    Article  MATH  Google Scholar 

  22. Han CS, Chung K, Wagoner RH, Oh SI (2003) A multiplicative finite elasto-plastic formulation with anisotropic yield functions. Int J Plast 19: 197–211

    Article  MATH  Google Scholar 

  23. Menzel A, Steinmann P (2003) On the spatial formulation of anisotropic multiplicative elasto-plasticity. Comp Meth Appl Mech Eng 192: 3431–3470

    Article  MATH  Google Scholar 

  24. Haupt P, Kersten Th (2003) On the modeling of anisotropic material behavior in viscoplasticity. Int J Plast 19: 1885–1915

    Article  MATH  Google Scholar 

  25. Itskov M, Aksel N (2004) A constitutive model for orthotropic elasto-plasticity at large strains. Arch Appl Mech 74: 75–91

    MATH  Google Scholar 

  26. Sansour C, Karsaj I, Soric J (2007) On anisotropic flow rules in multiplicative elastoplasticity at finite strains. Comp Meth Appl Mech Eng 196: 1294–1309

    Article  MathSciNet  MATH  Google Scholar 

  27. Schmidt I (2005) Some comments on formulations of anisotropic plasticity. Comp Mater Sci 32: 518–523

    Article  Google Scholar 

  28. Kowalewski ZL, Sliwowski M (1997) Effect of cyclic loading on the yield surface evolution of 18G2A low-alloy steel. Int J Mech Sci 39: 51–68

    Article  Google Scholar 

  29. Bunge HJ, Nielsen I (1997) Experimental determination of plastic spin in polycrystalline materials. Int J Plast 13: 435–446

    Article  Google Scholar 

  30. Truong Qui HK, Lippmann H (2001) Plastic spin and evolution of an anisotropic yield condition. Int J Mech Sci 43: 1969–1983

    Article  MATH  Google Scholar 

  31. Boheler JP, Koss S (1991) Evolution of anisotropy in sheet steels subjected to off-axes large deformation. In: Brüller O, Mannl V, Najar J (eds) Advances in continuum mechanics. Springer, Berlin, pp 143–158

    Google Scholar 

  32. Kim KH, Yin JJ (1997) Evolution of anisotropy under plane stress. J Mech Phys Solids 45: 841–851

    Article  Google Scholar 

  33. Bunge HJ (1982) Texture analysis in materials science. Butterworths, London

    Google Scholar 

  34. Kocks U, Tomé C, Wenk H (1998) Texture and anisotropy. Cambridge University Press, New York

    MATH  Google Scholar 

  35. Wu PD, Neale KW, Van der Giessen E (1996) Simulation of the behaviour of FCC polycrystals during reversed torsion. Int J Plast 12: 1199–1219

    Article  MATH  Google Scholar 

  36. Peeters B, Hoferlin E, Van Houtte P, Aernouldt E (2001) Assessment of crystal plasticity based calculation of the lattice spin of polycrystalline metals for FE implementation. Int J Plast 17: 819–836

    Article  MATH  Google Scholar 

  37. Van Houtte P, Li S, Seefeldt M, Delannay L (2005) Deformation texture prediction: from Taylor model to the advanced Lamel model. Int J Plast 21: 589–624

    Article  MATH  Google Scholar 

  38. Buchheit TE, Wellman GW, Battaile CC (2005) Investigating the limits of polycrystal plasticity modeling. Int J Plast 21: 221–249

    Article  MATH  Google Scholar 

  39. Nakamachi E, Tam NN, Morimoto H (2007) Multiscale finite element analysis of sheet metals by using SEM-EBSD measured crystallographic RVE models. Int J Plast 23: 450–489

    Article  MATH  Google Scholar 

  40. Duchene L, Houdaigui F, Habraken AM (2007) Length changes and texture prediction during free end torsion test of copper bars with FEM and remeshing techniques. Int J Plast 23: 1417–1438

    Article  MATH  Google Scholar 

  41. Raabe D, Roters F (2004) Using texture components in crystal plasticity finite element simulations. Int J Plast 20: 339–361

    Article  MATH  Google Scholar 

  42. Raabe D, Wang Y, Roters F (2005) Crystal plasticity simulation study on the influence of texture on earing in steel. Comp Mater Sci 34: 221–234

    Article  Google Scholar 

  43. Delaire F, Raphanel JL, Rey C (2000) Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: Experimental study and finite element simulations. Acta Mater 48: 1075–1087

    Article  Google Scholar 

  44. Choi Y, Walter ME, Lee JK, Han C-S (2006) Observations of anisotropy evolution and identification of plastic spin parameters by uniaxial tensile tests. J Mech Mat Struct 1: 303–324

    Google Scholar 

  45. Choi Y, Han C-S, Lee JK, Wagoner RH (2006) Modeling multi-axial deformation of planar anisotropic elasto-plastic materials, part I: Theory. Int J Plast 22: 1745–1764

    Article  MATH  Google Scholar 

  46. Dafalias YF (1985) The plastic spin. J Appl Mech ASME 52: 865–871

    Article  MATH  MathSciNet  Google Scholar 

  47. Dafalias YF, Aifantis EC (1990) On the microscopic origin of the plastic spin. Acta Mech 82: 31–48

    Article  MathSciNet  Google Scholar 

  48. Dafalias YF (1998) The plastic spin: necessity or redundancy?. Int J Plast 14: 909–931

    Article  MATH  Google Scholar 

  49. Dafalias YF (2000) Orientational evolution of plastic orthotropy in sheet metals. J Mech Phys Solids 48: 2231–2255

    Article  MATH  Google Scholar 

  50. Loret B (1983) On the effects of plastic rotation in the finite deformation of anisotropic elastoplastic materials. Mech Mater 2: 287–304

    Article  Google Scholar 

  51. Tvergaard V (2001) Plastic spin associated with non-normality theory of plasticity. Eur J Mech A/Solids 20: 893–905

    Article  MATH  Google Scholar 

  52. Peeters B, Seefeldt M, Teodosiu C, Kalidindi SR, Van Houtte P, Aernoudt E (2001) Work-hardening/softening behavior of B.C.C. polycrystals during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress-strain behavior of an IF steel during two-stage strain paths. Acta Mater 49: 1607–1619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Jürgen Bathe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DN., Montáns, F.J. & Bathe, KJ. Insight into a model for large strain anisotropic elasto-plasticity. Comput Mech 44, 651–668 (2009). https://doi.org/10.1007/s00466-009-0398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0398-z

Keywords

Navigation