Skip to main content
Log in

Developments in the application of the generalized finite element method to thick shell problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper develops and analyzes two techniques to extend the use of generalized finite element method techniques to structural shell problems. The first one is a procedure to define local domains for enrichment functions based on the use of pseudo-tangent planes. The second one is a procedure for imposing homogeneous essential boundary conditions and treatment of boundary layer problems by utilizing special functions. The main idea supporting the pseudo-tangent proposition is the separation of the geometric description, with its intrinsical distortions with respect to the physical domain, from the approximation space, which is defined in a locally undistorted domain. The treatment of essential boundary conditions allows an adequate enrichment in the boundary vicinity, preserving the completeness of the polynomials defining the basis functions. A set of numerical cases are tested in order to show the behavior of the proposed strategies, and a number of observations are drawn from the results, as follows. First, the technique of constructing the enrichment functions on a pseudo-tangent plane shows good results, even with strongly curved shell surfaces. With respect to the locking problem, the method behaves in a similar way as the classical hierarchical finite element methods, avoiding locking for appropriate levels of p-refinements. The procedure considered to impose essential boundary conditions in strong form appears to be more accurate than with the penalty or Lagrange multiplier methods. The inclusion of exponential modes for the treatment of boundary layers in shells provided extremely good results, even with integration elements much larger than the shell thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite element. Int J Numer Method Eng 2: 419–451

    Article  Google Scholar 

  2. Arnold DN, Falk SR (1989) Edge effects in the Reissner–Mindlin plate theory, analytic and computational models of shells 10-15-1989, A.S.M.E., New York

  3. Babuska I, Banerjee U, Olborn JE (2002) Meshless and generalized finite element methods: a survey of some major results. In: Schweitzer MA, Hildebrandt S (eds) Meshfree Methods for partial differential equations, International Workshop, University of Bonn, Garmany, 11–14 September. Lecture Notes in Computational Science and Engineering, Springer, Berlin, pp 1–20

  4. Babuska I, Melenk JM (1996) The particion of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4): 289–314

    MathSciNet  MATH  Google Scholar 

  5. Babuska I, Szabó B, Actis R (1990) Hierarchic Models for Composite Laminates; Report WU/CCM-90/4, Center for Computational Mechanics, Washington University, St. Louis, Missouri

  6. Belytschko T, Black T (1999) Elastic Crack Growth in Finite Elements with Minimal Remeshing. Int J Numer Methods Eng 45: 601–620

    Article  MathSciNet  MATH  Google Scholar 

  7. Belytschko T, Liu WK, Ong JSJ, Lam D (1985) Mixed variational principles and stabilization of spurios modes in the 9-nodes elements. Comput Struct 20: 121–128

    Article  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin method. Int J Numer Methods Eng 37: 229–256

    Article  MathSciNet  MATH  Google Scholar 

  9. Beissel S, Belytschko T (1996) Nodal integration for element-free Galerkin method. Comput Methods Appl Mech Eng 139(1–4): 49–74

    Article  MathSciNet  MATH  Google Scholar 

  10. Cho J-R, Oden JT (1997) Locking and boundary layer int hierarchical models for thin elastic structure. Comput Methods Appl Mech Eng 149: 33–48

    Article  MathSciNet  MATH  Google Scholar 

  11. Della Croce L, Scapolla T (1992) Hierarchic finite element method with seletive and uniform reduced integration for Reissner-Mindlin plates. Comput Mech 10: 121–131

    Article  MATH  Google Scholar 

  12. Dolbow J, Belytschko T (1999) Volumetric locking in the element-free Glerkin method. Int J Numer Methods Eng 46: 925–942

    Article  MathSciNet  MATH  Google Scholar 

  13. Donning BM, Liu WK (1998) Meshless method for shear-deformable beams and plates. Comput Methods Appl Mech Eng 152(1–2): 47–71

    Article  MATH  Google Scholar 

  14. Duarte CA, Oden TJ (1996) Hp-clouds—an h–p meshless method. Numér Methods Partial Differ Equ 12: 673–705

    Article  MathSciNet  MATH  Google Scholar 

  15. Duarte CA (1996) The hp clouds methods, Phd Tesis, Austin, Texas

  16. Duarte CA, Babuska I, Oden JT (2000) Generalized finite element method three dimensional structural mechanics problems. Comput Struct 77: 215–232

    Article  MathSciNet  Google Scholar 

  17. Duarte CA, Babuska I (2002) Mesh-independent directional p-enrichment using the generalized finite element method. Int J Numer Methods Eng 55: 1477–1492

    Article  MATH  Google Scholar 

  18. Ferreira AJM, Roque CMC, Jorge RMN (2007) Natural frequencies of FSDT cross-ply composite shells by multiquadric. Compos Srtuct 77: 296–305

    Article  Google Scholar 

  19. Fritz A, Hueber S, Wohlmuth BI (2004) A comparison of mortar and Nitsche techniques for linear elasticity. Calcolo 41: 115–137

    Article  MathSciNet  MATH  Google Scholar 

  20. Garcia O, Fancello EA, Barcellos CS, Duarte CA (2000) hp-Clouds in Mindlin’s thick plate models. Int J Numer Methods Eng 47(8): 1381–1400

    Article  MATH  Google Scholar 

  21. Garcia OA (2003) (Elementos finitos generalizados na análise estática de placas e cascas.) Doctoral Thesis. Department of Mechanical Engineering, Federal University of Santa Catarina - UFSC., Florianópolis

  22. Griebel M, Schweitzer MA (2002) A particle-partition of unity method. Part V: Boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 517–540

    Google Scholar 

  23. Huang CA, Hinton E (1986) A new nine node degenerated shell element with enhanced membrane and shear interpolation. Int J Numer Methods Eng 22: 73–92

    Article  MathSciNet  MATH  Google Scholar 

  24. Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33(20–22): 3057–3080

    Article  MATH  Google Scholar 

  25. Kansa EJ (1990) Multiquadrics-a scattered data approximation scheme with application to computational fluid dynamics. I: Surface approximation and partial derivative estimates. Comput Math Appl 19(8–9): 45–127

    MathSciNet  Google Scholar 

  26. Kansa EJ (1990) Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics II: Solution to parabolic, hyperbolic and elliptic partial diferential equations. Comput Math Appl 19(8–9): 92–385

    Google Scholar 

  27. Liu L, Chuan LP, Ghesta DM (2006) Conforming radial point interpolation method for spatial shell structures on the stress-resultant shell theory. Arch Appl Mech 75: 248–267

    Article  MATH  Google Scholar 

  28. Li S, Hao W, Liu WK (2000) Numerical Simulations of large deformation of thin shell using meshfree methods. Comput Mech 25: 102–116

    Article  MATH  Google Scholar 

  29. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle method. Int J Numer Methods Fluids 20: 1081–1116

    Article  MathSciNet  MATH  Google Scholar 

  30. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314

    Article  MathSciNet  MATH  Google Scholar 

  31. Mendez SF, Huerta A (2004) Imposing essential boundary conditions in meshfree methods. Comput Methods Appl Mech Eng 193: 1257–1275

    Article  MATH  Google Scholar 

  32. Moes N, Dolbow J, Belytschko T (1999) Elastic crack growth in finite elements without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  MATH  Google Scholar 

  33. Novotny A, Fancello EA (1996) Estudo das versoes adaptativas h, p e hp do método Método de Elementos Finitos na análise de flexão de placas de Reissner–Mindlin; Monografia de iniciação científica; Grupo de Análise de Tensões, UFSC

  34. Mendonça PTR, de Barcellos CS, Duarte CA (1998) Investigations on Timoshenko Beam Problems Using the hp-Clouds Meshless FEM. In: IV World Congress on Computation Mechanics, Buenos Aires, Argentina

  35. Oden TJ, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153: 117–126

    Article  MathSciNet  MATH  Google Scholar 

  36. Szabó B, Babuska I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  37. Schwebke KG, Holzer SM (2002) Some remarks on generalized finite element methos (GFEM) in solid mechanics, WCCM V. In: Fith World Congress on Computational Mechanics, Viena, Austria

  38. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of Plate and Shells, 2nd edn. Macgraw-hill, New York

    Google Scholar 

  39. Telles JCF (1987) A self-adaptative co-ordinate transformation for eficient numerical evalutation of general boundary element integrals. Int J Numer Methods Eng 24: 959–973

    Article  MATH  Google Scholar 

  40. Tiago C, Leitão V (2005) On the procedures to eliminate shear locking in the meshless methods, ECOMAS. In: Tematic conference on meshless methods

  41. Xenophontos CA, Schwab C, Suri M (1996) The hp version of the finite element method for singulary perturbed problems, Dissertation submitted to the graduate school of the University of Maryland in partial fulfillment of the requeriment for the degree of Doctor of Philosophic

  42. Zhu T, Atluri SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21(3): 211–222

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Alberto Fancello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, O.A., Fancello, E.A. & de Tarso R. Mendonça, P. Developments in the application of the generalized finite element method to thick shell problems. Comput Mech 44, 669–682 (2009). https://doi.org/10.1007/s00466-009-0396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0396-1

Keywords

Navigation