Skip to main content
Log in

Space adaptive finite element methods for dynamic Signorini problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Space adaptive techniques for dynamic Signorini problems are discussed. For discretisation, the Newmark method in time and low order finite elements in space are used. For the global discretisation error in space, an a posteriori error estimate is derived on the basis of the semi-discrete problem in mixed form. This approach relies on an auxiliary problem, which takes the form of a variational equation. An adaptive method based on the estimate is applied to improve the finite element approximation. Numerical results illustrate the performance of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinert K, Blum H, Jansen T, Rademacher A (2007) Simulation based optimization of the NC-shape grinding process with toroid grinding wheels. Prod Eng 1(3): 245–252

    Article  Google Scholar 

  2. Johnson C (1993) Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput Methods Appl Mech Eng 107: 117–129

    Article  MATH  Google Scholar 

  3. Li X, Wiberg N-E (1998) Implementation and adaptivity of a space–time finite element method for structural dynamics. Comput Methods Appl Mech Eng 156: 211–229

    Article  MATH  MathSciNet  Google Scholar 

  4. Aubry D, Lucas D, Tie B (1999) Adaptive strategy for transient/coupled problems: applications to thermoelasticity and elastodynamics. Comput Methods Appl Mech Eng 176: 41–50

    Article  MATH  MathSciNet  Google Scholar 

  5. Bangerth W, Rannacher R (1999) Finite element approximation of the acoustic wave equation: error control and mesh adaptation. East-West J Numer Math 7(4): 263–282

    MATH  MathSciNet  Google Scholar 

  6. Xie YM, Zienkiewicz OC (1991) A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earth Eng Struct Dyn 20: 871–887

    Article  Google Scholar 

  7. Li X, Wiberg N-E, Zeng LF (1992) A posteriori local error estimation and adaptive time-stepping for newmark integration in dynamic analysis. Earth Eng Struct Dyn 21: 555–571

    Article  Google Scholar 

  8. Bornemann FA, Schemann M (1998) An adaptive Rothe method for the wave equation. Comput Vis Sci 1: 137–144

    Article  MATH  Google Scholar 

  9. Adjerid S (2002) A posteriori finite element error estimation for second-order hyperbolic problems. Comput Methods Appl Mech Eng 191: 4699–4719

    Article  MATH  MathSciNet  Google Scholar 

  10. Bernadi C, Süli E (2005) Time and space adaptivity for the second-order wave equation. Math Models Methods Appl Sci 15(2): 199–225

    Article  MathSciNet  Google Scholar 

  11. Braess D (2005) A posteriori error estimators for obstacle problems—another look. Numer Math 101(3): 415–421

    Article  MATH  MathSciNet  Google Scholar 

  12. Schröder A (2006) Fehlerkontrollierte adaptive h- und hp-Finite-Elemente-Methoden für Kontaktprobleme mit Anwendungen in der Fertigungstechnik. Bayreuther Math Schr 78. available also via http://hdl.handle.net/2003/22487

  13. Johnson C (1992) Adaptive finite element methods for the obstacle problem. Math Models Methods Appl Sci 2: 483–487

    Article  MATH  MathSciNet  Google Scholar 

  14. Ainsworth M, Oden JT, Lee CY (1993) Local a posteriori error estimators for variational inequalities. Numer Methods Partial Differ Equ 9: 23–33

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoppe RHW, Kornhuber R (1994) Adaptive multilevel methods for obstacle problems. SIAM J Numer Anal 31: 301–323

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen Z, Nochetto R (2000) Residual type a posteriori error estimates for elliptic obstacle problems. Numer Math 84: 527–548

    Article  MATH  MathSciNet  Google Scholar 

  17. Veeser A (2001) Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J Numer Anal 39: 146–167

    Article  MATH  MathSciNet  Google Scholar 

  18. Nochetto RH, Siebert KG, Veeser A (2003) Pointwise a posteriori error control for elliptic obstacle problems. Numer Math 95: 163–195

    Article  MATH  MathSciNet  Google Scholar 

  19. Bartels S, Carstensen C (2004) Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer Math 99: 225–249

    Article  MATH  MathSciNet  Google Scholar 

  20. Suttmeier FT (2005) On a direct approach to adaptive fe-discretisations for elliptic variational inequalities. J Numer Math 13: 73–80

    Article  MATH  MathSciNet  Google Scholar 

  21. Wohlmuth BI (2007) An a posteriori error estimator for two-body contact problems on non-matching meshes. J Sci Comput 33: 25–45

    Article  MATH  MathSciNet  Google Scholar 

  22. Braess D, Carstensen C, Hoppe RHW (2007) Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer Math 107: 455–471

    Article  MATH  MathSciNet  Google Scholar 

  23. Wriggers P, Vu Van T, Stein E (1990) Finite element formulation of large deformation impact-contact problems with friction. Comput Struct 37(3): 319–331

    Article  MATH  Google Scholar 

  24. Bathe KJ, Chaudhary AB (1986) A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Comput Struct 24(6): 855–873

    Article  MATH  Google Scholar 

  25. McDevitt TW, Laursen TA (2000) A Mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10): 1525–1547

    Article  MATH  MathSciNet  Google Scholar 

  26. Puso M, Laursen TA (2002) A 3D contact smoothing method using gregory patches. Int J Numer Methods Eng 54(8): 1161–1194

    Article  MATH  MathSciNet  Google Scholar 

  27. Hager C, Hüeber S, Wohlmuth BI (2008) A stable energy conserving approach for frictional contact problems based on quadrature formulas. Int J Numer Methods Eng 73: 205–225

    Article  MATH  Google Scholar 

  28. Deuflhard P, Krause R, Ertel S (2007) A contact-stabilized Newmark method for dynamical contact problems. Int J Numer Methods Eng 73(9): 1274–1290

    Article  MathSciNet  Google Scholar 

  29. Armero F, Petőcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158: 269–300

    Article  MATH  Google Scholar 

  30. Laursen TA, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40: 863–886

    Article  MATH  MathSciNet  Google Scholar 

  31. Kane C, Repetto EA, Ortiz M, Marsden JE (1999) Finite element analysis of nonsmooth contact. Comput Methods Appl Mech Eng 180: 1–26

    Article  MATH  MathSciNet  Google Scholar 

  32. Pandolfi A, Kane C, Marsden JE, Ortiz M (2002) Time- discretized variational formulation of non-smooth frictional contact. Int J Numer Methods Eng 53: 1801–1829

    Article  MATH  MathSciNet  Google Scholar 

  33. Talaslidis D, Panagiotopoulos PD (1982) A linear finite element Approach to the Solution of the variational inequalities arising in contact problems of structural dynamics. Int J Numer Methods Eng 18: 1505–1520

    Article  MATH  Google Scholar 

  34. Czekanski A, Meguid SA (2001) Analysis of dynamic frictional contact problems using variational inequalities. Finite Elem Anal Des 37: 6861–6879

    Article  MathSciNet  Google Scholar 

  35. Rademacher A (2005) Finite-Elemente-Diskretisierungen für dynamische Probleme mit Kontakt. Diploma-Thesis, University of Dortmund. Available via http://hdl.handle.net/2003/22996

  36. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  37. Wriggers P (2002) Computational contact mechanics. Wiley, Chichester

    Google Scholar 

  38. Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Stud Appl Math, SIAM, Philadelphia

  39. Evans LC (1998) Partial differential equations. American Mathematical Society, Providence

    MATH  Google Scholar 

  40. Panagiotopoulos PD (1985) Inequality problems in mechanics and applications, convex and nonconvex energy functions. Birkhäuser, Basel

    MATH  Google Scholar 

  41. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div ASCE 85(EM3): 67–94

    Google Scholar 

  42. Hughes TJR (2000) The finite element method. Dover Publications, Inc, Mineola

    Google Scholar 

  43. Cea J (1978) Lectures on optimization—theory and algorithms. Springer, Berlin

    MATH  Google Scholar 

  44. Ekeland I, Temam R (1976) Convex analysis and variational problems. Studies in mathematics and its applications. North-Holland, Amsterdam

    Google Scholar 

  45. Schröder A (2009) Error control in h- and hp-adaptive FEM for Signorini’s problem. Institute for Mathematics, Humboldt Universität zu Berlin (ISSN 0863-0976), Preprint 09-05. Available via http://www.mathematik.hu-berlin.de/publ/pre/2009/p-list-09.html

  46. Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley and Teubner, Chichester

    MATH  Google Scholar 

  47. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, New York

    MATH  Google Scholar 

  48. Hermann M (2004) Numerik gewöhnlicher Differentialgleichungen. Oldenbourg Verlag, München

    MATH  Google Scholar 

  49. Klapproth C, Schiela A, Deuflhard, P (2009) Consistency Results for the Contact-Stabilized Newmark Method. Zuse-Institut Berlin, Preprint 09-06. Available via http://www.zib.de/bib/pub/pw/cont.de.html

  50. Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. Birkhäuser, Basel

    MATH  Google Scholar 

  51. Schmidt A, Siebert K G (2004) Design of adaptive finite element software. Lecture notes in computational science and engineering. Springer, Berlin

    Google Scholar 

  52. Bangerth W, Rannacher R (2001) Adaptive finite element techniques for the acoustic wave equation. J Comp Acoust 9(2): 575–591

    Article  MathSciNet  Google Scholar 

  53. Schmich M, Vexler B (2008) Adaptivity with dynamic meshes for space–time finite element discretizations of parabolic equations. SIAM J Sci Comput 30(1): 369–393

    Article  MATH  MathSciNet  Google Scholar 

  54. Blum H, Jansen T, Rademacher A, Weinert K (2008) Finite elements in space and time for dynamic contact problems. Int J Numer Meth Eng 76: 1632–1644

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Rademacher.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (MPG 6.16 MB)

ESM 2 (MPG 5.95 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, H., Rademacher, A. & Schröder, A. Space adaptive finite element methods for dynamic Signorini problems. Comput Mech 44, 481–491 (2009). https://doi.org/10.1007/s00466-009-0385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0385-4

Keywords

Navigation