Skip to main content
Log in

Numerical modeling of complex interactions between underwater shocks and composite structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

To study the complex interactions between underwater shocks and composite structures, a strongly coupled Eulerian–Lagrangian numerical solver is developed. The coupled numerical solver consists of an Eulerian fluid solver, a Lagrangian solid solver, a one-fluid cavitation model, and an interface capturing scheme. The interface capturing scheme features a fluid characteristics method and a modified ghost fluid method (MGFM). The MGFM is reformulated for fluid–solid coupling by treating simultaneously the fluid characteristics equation and the solid equation of motion to determine the interface variables, leading to a strongly coupled Eulerian–Lagrangian scheme. Various components of the numerical solver are first individually tested and validated. The strongly coupled solver is then applied to realistic shock-structure interaction problems involving composite structures. The accuracy of the coupled solver is demonstrated via comparison with numerical predictions and experimental observations available in literature. Finally, the validated coupled numerical solver is utilized to study the effectiveness of a proof-of-concept shock mitigation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABAQUS (2005) ABAQUS Version 6.6 Documentation. ABAQUS, Inc.

  2. Benson DJ (1991) A new two-dimensional flux-limited shock viscosity for impact calculations. Comput Methods Appl Mech Eng 93: 39–95

    Article  MATH  Google Scholar 

  3. Benson DJ (1992) Computational methods in lagrangian and eulerian hydrocodes. Comput Methods Appl Mech Eng 99: 235–394

    Article  MATH  MathSciNet  Google Scholar 

  4. Bleich HH, Sandler IS (1970) Interaction between structures and bilinear fluids. Int J Solids Struc 6: 617–639

    Article  MATH  Google Scholar 

  5. Cole RH (1965) Underwater explosions. Dover, New York

    Google Scholar 

  6. Deshpande VS, Fleck NA (2005) One-dimensional response of sandwich plates to underwater shock loading. J Mech Phys Solids 53: 2347–2383

    Article  Google Scholar 

  7. Deshpande VS, Heaver A, Fleck NA (2006) An underwater shock simulator. Proc R Soc A 462: 1021–1041

    Article  MATH  Google Scholar 

  8. Espinosa HD, Lee S, Moldovan N (2006) A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading. Exp Mech 46: 805–824

    Article  Google Scholar 

  9. Fedkiw RP (2002) Coupling an eulerian fluid calculation to a lagrangian solid calculation with the ghost fluid method. J Comput Phys 175: 200–224

    Article  MATH  Google Scholar 

  10. Felippa CA, DeRuntz JA (1984) Finite element analysis of shock-induced hull cavitation. Comput Methods Appl Mech Eng 44: 297–337

    Article  MATH  Google Scholar 

  11. Fleck NA, Deshpande VS (2004) The resistance of clamped sandwich beams to shock loading. J Appl Mech 71: 386–401

    Article  MATH  Google Scholar 

  12. Harten A, Lax PD, Leer BV (1983) On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25: 35–61

    Article  MATH  MathSciNet  Google Scholar 

  13. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349

    Article  MATH  MathSciNet  Google Scholar 

  14. Hutchinson JW, Xue ZY (2005) Metal sandwich plates optimized for pressure impulses. Int J Mech Sci 47: 545–569

    Article  Google Scholar 

  15. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94

    Article  MATH  Google Scholar 

  16. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143

    Article  MATH  Google Scholar 

  17. Liang YM, Spuskanyuk AV, Flores SE, Hayhurst DR, Hutchinson JW, McMeeking RM, Evans AG (2007) The response of metallic sandwich panels to water blast. J Appl Mech 74: 81–99

    Article  MATH  Google Scholar 

  18. Liu TG, Khoo BC, Yeo KS (2003) Ghost fluid method for strong shock impacting on material interface. J Comput Phys 190: 651–681

    Article  MATH  Google Scholar 

  19. Liu TG, Khoo BC, Wang CW (2005) The ghost fluid method for compressible gas-water simulation. J Comput Phys 204: 193–221

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu Z, Young YL (2008) Transient response of submerged plates subject to underwater shock loading: an analytical perspective. J Appl Mech 75:044504-1-5

    Google Scholar 

  21. Makinen K (1999) Underwater shock loaded sandwich structures. PhD thesis, Royal Institute of Technology, Stockholm, Sweden

  22. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows-fluid-structure interactions. Int J Numer Methods Fluids 21: 933–953

    Article  MATH  Google Scholar 

  23. Nurick GN, Martin JB (1989) Deformation of thin plates subjected to impulsive loading-a review. Part I: theoretical considerations. Int J Impact Eng 8: 159–170

    Article  Google Scholar 

  24. Nurick GN, Martin JB (1989) Deformation of thin plates subjected to impulsive loading-a review. Part II: experimental studies. Int J Impact Eng 8: 171–186

    Article  Google Scholar 

  25. Qiu X, Deshpande VS, Fleck NA (2003) Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading. Eur J Mech A/Solids 22: 801–814

    Article  MATH  Google Scholar 

  26. Rabczuk T, Kim JY, Samaniego E, Belytschko T (2004) Homogenization of sandwich structures. Int J Numer Methods Eng 61: 1009–1027

    Article  MATH  Google Scholar 

  27. Rabczuk T, Samaniego E, Belytschko T (2007) Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction. Int J Impact Eng 34: 163–177

    Article  Google Scholar 

  28. Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flows with the VSGS stabilization and YZβ shock-capturing. Int J Numer Methods Fluids 54: 695–706

    Article  MATH  MathSciNet  Google Scholar 

  29. Roe PL (1986) Characteristic-based schemes for the Euler equations. Ann Rev Fluid Mech 18: 337–365

    Article  MathSciNet  Google Scholar 

  30. Saurel R, Abgral R (1999) A multiphase godunov method for compressible multifluid and multiphase flows. J Comput Phys 150: 425–467

    Article  MATH  MathSciNet  Google Scholar 

  31. Stein K, Tezduyar TE, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70: 58–63

    Article  MATH  Google Scholar 

  32. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032

    Article  MATH  Google Scholar 

  33. Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless soroban grids. Comput Mech 40: 167–183

    Article  Google Scholar 

  34. Tang HS, Sotiropoulos F (1999) A second-order godunov method for wave problems in coupled solid–water–gas systems. J Comput Phys 151: 790–815

    Article  MATH  MathSciNet  Google Scholar 

  35. Taylor GI (1941) The pressure and impulse of submarine explosion waves on plates. Scientif Pap G I Taylor III: 287–303

    Google Scholar 

  36. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575

    Article  MATH  MathSciNet  Google Scholar 

  37. Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900

    Article  MATH  MathSciNet  Google Scholar 

  38. Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195: 1621–1632

    Article  MATH  MathSciNet  Google Scholar 

  39. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351

    Article  MATH  MathSciNet  Google Scholar 

  40. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371

    Article  MATH  MathSciNet  Google Scholar 

  41. Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26: 27–36

    Article  Google Scholar 

  42. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027

    Article  MATH  MathSciNet  Google Scholar 

  43. Wadley HNG (2006) Multifunctional periodic cellular metals. Proc R Soc A 364: 31–68

    Google Scholar 

  44. Xie WF, Liu TG, Khoo BC (2006) Application to a one-fluid model for large scale homogeneous unsteady cavitation: the modified schimidt model. Comput Fluids 35: 1177–1192

    Article  Google Scholar 

  45. Xie WF, Young YL, Liu TG, Khoo BC (2006) Dynamic response of deformable structures subjected to shock load and cavitation reload. Comput Mech 40: 667–681

    Article  Google Scholar 

  46. Xie WF, Young YL, Liu TG (2007) Multiphase modeling of dynamic fluid-structure interaction during closed-in explosion. Int J Numer Methods Eng (in press)

  47. Xue ZY, Hutchinson JW (2004) A comparative study of impulse-resistant metal sandwich plates. Int J Impact Eng 30: 1283–1305

    Article  Google Scholar 

  48. Zhang Q, Hisada T (2004) Studies of strong coupling and weak coupling methods in FSI analysis. Int J Numer Methods Eng 60: 2013–2029

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanke Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Xie, W. & Young, Y.L. Numerical modeling of complex interactions between underwater shocks and composite structures. Comput Mech 43, 239–251 (2009). https://doi.org/10.1007/s00466-008-0301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0301-3

Keywords

Navigation