Skip to main content
Log in

Formulation and performance of variational integrators for rotating bodies

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Variational integrators are obtained for two mechanical systems whose configuration spaces are, respectively, the rotation group and the unit sphere. In the first case, an integration algorithm is presented for Euler’s equations of the free rigid body, following the ideas of Marsden et al. (Nonlinearity 12:1647–1662, 1999). In the second example, a variational time integrator is formulated for the rigid dumbbell. Both methods are formulated directly on their nonlinear configuration spaces, without using Lagrange multipliers. They are one-step, second order methods which show exact conservation of a discrete angular momentum which is identified in each case. Numerical examples illustrate their properties and compare them with existing integrators of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman SS (1992) Nonlinear problems of elasticity. Springer, Heidelberg

    Google Scholar 

  2. Argyris JH (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32: 85–155

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold VI (1989) Mathematical methods of classical mechanics. Springer, Heidelberg

    Google Scholar 

  4. Austin M, Krishnaprasad PS, Wang LS (1993) Almost Poisson integration of rigid body systems. J Comput Phys 107(1): 105–117

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldstein H (1980) Classical mechanics, 2nd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  6. Hairer E, Lubich C, Wanner G (2002) Geometric numerical integration. Springer series in Computational Mathematics. Springer, Heidelberg

  7. Iserles A, Munthe-Kass HZ, Norsett SP, Zanna A (2000) Lie group methods. Acta Numer 9: 215–365

    Article  Google Scholar 

  8. Kharevych L, Weiwei, Tong Y, Kanso E, Marsden JE, Schröder P, Desbrun M (2006) Geometric, variational integrators for computer animation. In: Eurographics/ACM SIGGRAPH symposium on Computer Animation, The Eurographics Association

  9. Krysl P (2005) Explicit momentum-conserving integrator for dynamics of rigid bodies approximating the midpoint lie algorithm. Int J Numer Methods Eng 63(15): 2171–2193

    Article  MATH  MathSciNet  Google Scholar 

  10. Krysl P (2007) Dynamically equivalent implicit algorithms for the integration of rigid body rotations. Int J Numer Methods Eng (in press). doi:10.1002/cnm.963

  11. Kuipers JB (1999) Quaternions and rotation sequences. Princeton University Press, Princeton

    MATH  Google Scholar 

  12. Lee T, Leok M, Harris McClamrock N (2007) Lie group variational integrators for the full body problem. Comput Methods Appl Mech Eng 196: 2907–2924

    Article  MATH  Google Scholar 

  13. Lew A, Marsden JE, Ortiz M, West M (2003) Asynchronous variational integrators. Arch Rational Mech Anal 167: 85–146

    Article  MATH  MathSciNet  Google Scholar 

  14. Lew A, Marsden JE, Ortiz M, West M (2004) Variational time integrators. Int J Numer Methods Eng 60: 153–212

    Article  MATH  MathSciNet  Google Scholar 

  15. Lewis D, Simo JC (1996a) Conserving algorithms for the N-dimensional rigid body. In: Integration algorithms and classical mechanics (Toronto, ON, 1993). Amer. Math. Soc., Providence, pp 121–139

  16. Lewis D, Simo JC (1996b) Conserving algorithms for the N-dimensional rigid body. Fields Inst commun 10: 121–139

    MathSciNet  Google Scholar 

  17. Maeda S (1980) Canonical structure and symmetries for discrete dynamics. Math Jpn 25: 405–420

    MATH  Google Scholar 

  18. Marsden JE, Ratiu TS (1994) Introduction to mechanics and Symmetry, 1st edn. Springer, New York

    MATH  Google Scholar 

  19. Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 10: 357–514

    Article  MATH  MathSciNet  Google Scholar 

  20. Marsden JE, Pekarsky S, Shkoller S (1999) Discrete Euler–Poincaré and Lie-Poisson equations. Nonlinearity 12: 1647–1662

    Article  MATH  MathSciNet  Google Scholar 

  21. Moser J, Veselov AP (1991) Discrete versions of some classical integrable systems and factorization of matrix polynomilas. Commun Math Phys 139(2): 217–243

    Article  MATH  MathSciNet  Google Scholar 

  22. Sanz-Serna JM, Calvo MP (1994) Numerical Hamiltonian problems. Chapman and Hall, London

    MATH  Google Scholar 

  23. Simo JC, Wong K (1991) Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int J Numer Methods Eng 31: 19–52

    Article  MATH  MathSciNet  Google Scholar 

  24. Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. III. Computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79(1): 21–70

    Article  MATH  MathSciNet  Google Scholar 

  25. Simo JC, Tarnow N, Wong KK (1992) Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100(1): 63–116

    Article  MATH  MathSciNet  Google Scholar 

  26. Veselov AP (1988) Integrable discrete-time systems and difference operators. Funkts Anal Prilozhen 22(2): 1–13

    MATH  MathSciNet  Google Scholar 

  27. Wendlandt JM, Marsden JE (1997) Mechanical integrators derived from a discrete variational principle. Phys D 106(3–4): 223–246

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Romero.

Additional information

Financial support for this work has been provided by grant DPI2006-14104 from the Spanish Ministry of Education and Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, I. Formulation and performance of variational integrators for rotating bodies. Comput Mech 42, 825–836 (2008). https://doi.org/10.1007/s00466-008-0286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0286-y

Keywords

Navigation