Skip to main content
Log in

An automatic adaptive refinement procedure for the reproducing kernel particle method. Part II: Adaptive refinement

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In Part II of this study, an automatic adaptive refinement procedure using the reproducing kernel particle method (RKPM) for the solution of 2D linear boundary value problems is suggested. Based in the theoretical development and the numerical experiments done in Part I of this study, the Zienkiewicz and Zhu (ZZ) error estimation scheme is combined with a new stress recovery procedure for the a posteriori error estimation of the adaptive refinement procedure. By considering the a priori convergence rate of the RKPM and the estimated error norm, an adaptive refinement strategy for the determination of optimal point distribution is proposed. In the suggested adaptive refinement scheme, the local refinement indicators used are computed by considering the partition of unity property of the RKPM shape functions. In addition, a simple but effective variable support size definition scheme is suggested to ensure the robustness of the adaptive RKPM procedure. The performance of the suggested adaptive procedure is tested by using it to solve several benchmark problems. Numerical results indicated that the suggested refinement scheme can lead to the generation of nearly optimal meshes for both smooth and singular problems. The optimal convergence rate of the RKPM is restored and thus the effectivity indices of the ZZ error estimator are converging to the ideal value of unity as the meshes are refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mackerle J (2001) Error estimates and adaptive finite element methods: a bibliography (1990–2000). Eng Comput 18:802–914

    Article  MATH  Google Scholar 

  2. Mackerle J (2001) 2D and 3D finite element meshing and remeshing: a bibliography (1990–2001). Eng Comput 18:1108–1197

    Article  MATH  Google Scholar 

  3. Lo SH (Guest editor)(1997) Special issue on adaptive meshing, Part I, Fin. Ele. Anal. Des., 25, No. 1/2 pp 1–198

  4. Lo SH (Guest editor) (1997) Special issue on adaptive meshing, Part II, Fin. Ele. Anal. Des., 25, No. 3/4 pp 199–350

  5. Lo SH (2002) Finite element mesh generation and adaptive meshing. Prog Struct Eng Mater 4:381–300

    Article  Google Scholar 

  6. Talyor RL FEAP, A finite element analysis program version 7.5 Released, http://www.ce.berkeley.edu/~rlt/feap/

  7. LUSAS (1997) MYSTRO user guide, FEA Ltd, UK

  8. Duarte CAM, Oden JT (1996) A hp adaptive method using clouds. Comput Meth Appl Mech Eng 139:237–262

    Article  MATH  MathSciNet  Google Scholar 

  9. Haussler-Combe U, Korn C (1998) An adaptive approach with the element-free-Galerkin method. Comput Meth Appl Mech Eng 162:203–222

    Article  MathSciNet  Google Scholar 

  10. Jun S, Im S (2000) Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation. Comput Mech 25:257–266

    Article  MATH  Google Scholar 

  11. Huetra A, Fernandez-Mendez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Meth Eng 48:1615–1636

    Article  Google Scholar 

  12. Lee SH, Kim HJ, Jun S (2000) Two scale meshfree method for the adaptivity of 3-D stress concentration problems. Comput Mech 26:376–387

    Article  MATH  Google Scholar 

  13. Kang MS, Youn SK (2001) Dof splitting p-adaptive meshless method. Struct Eng Mech 11:535–546

    Google Scholar 

  14. Liu GR, Tu ZH (2002) An adaptive procedure based on background cells for meshless methods. Comput Meth Appl Mech Eng 191:1923–1943

    Article  MATH  Google Scholar 

  15. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Meth Eng 38:1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu WK, Sukky J, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Meth Fluids 20:1081–1106

    Article  MATH  Google Scholar 

  17. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  18. Lu YY, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Meth Appl Mech Eng 113:397–414

    Article  MATH  MathSciNet  Google Scholar 

  19. Chung HJ, Belytschko T (1998) An error estimate in the EFG method. Comput Mech 21:91–100

    Article  MATH  MathSciNet  Google Scholar 

  20. Gavete L, Falcon S, Ruiz A (2001) An error indicator for the element free Galerkin method. Eur. J. Mech. A/Solids 20:327–341

    Article  MATH  Google Scholar 

  21. Gavete L, Cuesta JL, Ruiz A (2002) A procedure for approximation of the error in the EFG method. Int J Numer Meth Eng 53:677–690

    Article  MATH  MathSciNet  Google Scholar 

  22. Gavete M, Gavete L, Alonso B, Martin AJ (2003) A posteriori error approximation in EFG method. Int J Numer Meth Eng 58:2239–2263

    Article  MATH  MathSciNet  Google Scholar 

  23. Lee CK, Zhou CE (2004) On error estimation and adaptive refinement for element free Galerkin method. Part I: stress recovery and a posteriori error estimation. Comput Struct 82:413–428

    Article  Google Scholar 

  24. Lee CK, Zhou CE (2004) On error estimation and adaptive refinement for element free Galerkin method. Part II: Adaptive refinement. Comput Struct 82:429–443

    Article  Google Scholar 

  25. Lee CK, Shuai YY (2006) An automatic adaptive refinement procedure for reproducing kernel particle method, Part I: Stress recovery and a posteriori error estimation. Comput Mech (accepted for publication)

  26. Lee CK (2000) A new finite point generation scheme using metric specifications. Int J Numer Meth Eng (United States). 48(10):1423–1444

    Article  MATH  Google Scholar 

  27. Lohner R, Onate E (1998) An advancing front point generation technique. Commun Numer Meth Eng 14:1097–1108

    Article  MathSciNet  Google Scholar 

  28. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Meth Eng 24:337–357

    Article  MATH  MathSciNet  Google Scholar 

  29. Szabo BA, Babuska I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  30. Lee CK, Lie ST, Shuai YY (2005) On coupling of reproducing kernel particle method and boundary element method. Comput Mech 34:282–297

    MathSciNet  Google Scholar 

  31. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Meth Eng 33:1331–1364

    Article  MATH  MathSciNet  Google Scholar 

  32. Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Meth Eng 43:839–887

    Article  MATH  MathSciNet  Google Scholar 

  33. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Meth Eng 33:1365– 1382

    Article  MATH  MathSciNet  Google Scholar 

  34. Lee CK, Lo SH (1992) An automatic adaptive refinement finite element procedure for 2D elastostatic analysis. Int J Numer Meth Eng 35:1967–1989

    Article  MATH  MathSciNet  Google Scholar 

  35. Lee CK, Hobbs RE (1997) Automatic adaptive refinement for shell analysis using nine-node assumed strain element. Int J Numer Meth Eng 40:3601–3638

    Article  MATH  Google Scholar 

  36. Lee CK, Hobbs RE (1998) On solving nearly incompressible 2D problems using an adaptive refinement procedure. Commun Numer Meth Eng 41:409–418

    Article  MathSciNet  Google Scholar 

  37. Lee CK, Hobbs RE (1998) Automatic adaptive refinement for plate bending problems using Reissner–Mindlin plate bending elements. Int J Numer Meth Eng 41:1–63

    Article  MATH  MathSciNet  Google Scholar 

  38. Onate E, Bugeda G (1993) A study of mesh optimality criteria in adaptive finite element analysis. Eng Comput 10:307–321

    MathSciNet  Google Scholar 

  39. Lee CK (1999) Automatic adaptive mesh generation using metric advancing front approach. Eng Comput 16:230–263

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.K., Shuai, Y.Y. An automatic adaptive refinement procedure for the reproducing kernel particle method. Part II: Adaptive refinement. Comput Mech 40, 415–427 (2007). https://doi.org/10.1007/s00466-006-0113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0113-2

Keywords

Navigation