Skip to main content
Log in

Numerical Homogenization Techniques Applied to Growth and Remodelling Phenomena

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Materials with inherent microstructures like granular media, foams or spongy bones often show a complex constitutive behaviour on the macroscale while the microscopic constitutive equations may be formulated in a simple fashion. Applying homogenization procedures allows to transfer the information from the microlevel to the macrolevel.

In the present contribution the porous structure of hard biological tissues, i.e. of spongy bones, is investigated. On the macroscale the approach is embedded into an extended continuum mechanical setting in order to capture size effects. The constitutive equations are formulated on the microscopic level taking into account growth and reorientation of the microstructural elements. By application of a strain-driven numerical homogenization procedure the macroscopic stress response is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aşkar A (1986) Lattice dynamical foundations of continuum theories. World Scientific Publication, Singapore

    Google Scholar 

  2. Aşkar A, Çakmak A (1968) A structural model of a micropolar continuum. Int J Eng Sci 6:583–589

    Article  MATH  Google Scholar 

  3. Adachi T, Tomita Y, Tanaka M (1999) Three-dimensional lattice continuum model of cancellous bone for structural and remodeling simulation. JSME Int J 42(3):470–480

    Google Scholar 

  4. Adachi T, Tsubota K, Tomita Y, Hollister SJ (2001) Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. ASME J Biomech Eng 123: 403–409

    Article  Google Scholar 

  5. Bardet J, Vardoulakis I (2001) The asymetry of stress in granular media. Int J Solids Struct 38:353–367

    Article  MATH  Google Scholar 

  6. Carter D, Beaupre G (2001) Skeletal Function and Form: mechanobiology of skeletal development, aging and regeneration. Cambridge University Press, Cambridge

    Google Scholar 

  7. Cosserat E, Cosserat F (1909) Théorie des corps déformables. A. Hermann et Fils, Paris

    Google Scholar 

  8. Cowin S, Hegedus D (1976) Bone remodeling I: Theory of adaptive elasticity. J Elasticity 6:313–326

    Article  MATH  MathSciNet  Google Scholar 

  9. Diebels S, Ehlers W (2001). Homogenization method for granular assemblies. In: Wall W, Bletzinger K-U, Schweizerhof K (eds). Proceedings of trends in computational structural Mechanics. CIMNE, Barcelona, Spain, pp. 79–88

    Google Scholar 

  10. Diebels S, Steeb H (2002) The size effect in foams and its theoretical and numerical investigation. In: Proceedings of the Royal Society London A, vol 458, pp 2869–2883

  11. Diebels S, Steeb H (2003) Stress and couple stress in foams. Comp Math Sci 28:714–722

    Article  Google Scholar 

  12. Ebinger T, Steeb H, Diebels S (2004) Modeling macroscopic extended continua with the aid of numerical homogenization schemes. Comp Math Sci 32:337–347

    Article  Google Scholar 

  13. Ebinger T, Steeb H, Diebels S (2005) Modeling and homogenization of foams. Comp Assisted Mech Eng Sci 12:49–63

    Google Scholar 

  14. Ehlers W, Ramm E, Diebels S, D’Addetta GA (2003) From particle ensembles to Cosserat continua: Homogenization of contact forces towards stresses and couple stresses. Int J Solids Struct 40: 6681–6702

    Article  MATH  MathSciNet  Google Scholar 

  15. Eringen C (1999) Microcontinuum Field Theories, vol I, Foundations and solids. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Feyel F, Chaboche J (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comp Meth Appl Mech Eng 183:309–330

    Article  MATH  Google Scholar 

  17. Forest S (1998) Mechanics of generalized continua: construction by homogenization. J Phys IV:39–48

    Google Scholar 

  18. Forest S, Sab K (1998) Cosserat overall modeling of heterogeneous materials. Mech Res Commun 25:449–454

    Article  MATH  MathSciNet  Google Scholar 

  19. Geers M, Kouznetsova V, Brekelmans W (2003) Multi-scale first-order and second-order computational homogenization of microstructures towards continua. Int J Multiscale Comput Eng (in press)

  20. Gibson L, Ashby M (1997) Cellular solids. Structure and properties. Cambridge solid state science series. Cambridge University Press, Cambridge

    Google Scholar 

  21. Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomical location and function. J Biomech 20:1055–1061

    Article  Google Scholar 

  22. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and mechanical properties of trabecular bone. J Biomech 27:375–389

    Article  Google Scholar 

  23. Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 10:195–213

    MATH  Google Scholar 

  24. Hashin Z (1983) Analysis of composite materials – a survey. J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  25. Hohe J, Becker W (2001) An energetic homogenisation procedure for the elastic properties of general cellular sandwich cores. Composites: Part B 32:185–197

    Article  Google Scholar 

  26. Hollister SJ, Fyrhie DP, Jepsen KJ, Goldstein SA (1991) Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 24:825–839

    Article  Google Scholar 

  27. Huet C (1997) An integrated micromechanics and statistical continuum thermodynamics approach for studying the fracture behaviour of microcracked heterogeneous materials with delayed response. Eng Fracture Mech 58:459–556

    Article  Google Scholar 

  28. Huiskes R, Ruimerman R, van Lenthe G, Janssen J (2000) Effects of mechanical forces on maintenance and adaption of form in trabecular bone. Nature 405:704–706

    Article  Google Scholar 

  29. Huiskes R, Weinans H, Dalstra M (1989) Adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty. Orthopedics 12:1255–1267

    Google Scholar 

  30. Kouznetsova V, Brekelmans W, Baaijens F (2001) An approach to micro-macro modeling of heterogeneous materials. Comp Mech 37–48

  31. Kuhl E (2004) Theory and numerics of open system continuum thermodynamics – spatial and material settings. Habilitation-thesis, Chair of Applied Mechanics, Technical University of Kaiserslautern

  32. Kuhl E, Steinmann P (2003) Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Meth Eng 58:1593–1615

    Article  MATH  MathSciNet  Google Scholar 

  33. Lakes R (1995). Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus H (eds). Continuum methods for materials with microstructures. Wiley, Chichester, pp. 1–25

    Google Scholar 

  34. van Lenthe GH, Willems MMM, Verdonschot N, de Waal Malefijt MC, Huiskes R (2002) Stemmed femoral knee prostheses. Acta Orthop Scand 73:630–637

    Article  Google Scholar 

  35. Mullender M, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13:503–512

    Article  Google Scholar 

  36. Nackenhorst U (1997) Numerical simulation of stress stimulated bone remodeling. Technische Mechanik 17:31–40

    Google Scholar 

  37. Nauenberg T, Bouxsein M, Mikić B, Carter D (1993) Using clinical data to improve computational bone remodeling theory. Trans Orthop Res Soc 18:123

    Google Scholar 

  38. Nemat-Nasser S, Hori M (1993) Micromechanics. North-Holland, Amsterdam

  39. Nowacki W (1986) Thermoelasticity. Pergamon Press, Oxford

    MATH  Google Scholar 

  40. Onck P, Andrews E, Gibson L (2001) Size effects in ductile cellular solids. Part I: modeling. Int J Mech Sci 43:681–699

    Article  MATH  Google Scholar 

  41. Papka S, Kyriakides S (1998) Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Mater 46:2765–2776

    Article  Google Scholar 

  42. Pettermann HE, Reiter TJ, Rammerstorfer FG (1997) Computational simulation of internal bone remodeling. Arch Comput Methods Eng 4:295–323

    Google Scholar 

  43. Pistoia W, van Rietbergen B, Laib A, Rüegsegger P (2001) High-resolution three-dimensional-pqct images can be an adequate basis for in vivo μfe analysis of bone. ASME J Biomech Eng 123:176–183

    Article  Google Scholar 

  44. Roux W (1881) Der Kampf der Teile im Organismus. Engelmann, Leipzig

    Google Scholar 

  45. Ruimerman R, Hilbers P, van Rietbergen B, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38:931–941

    Article  Google Scholar 

  46. Sanchez-Palencia E (1980) Non-homogeneous meida and vibration theory. Springer, Berlin Heidelberg New York

    Google Scholar 

  47. Schaefer H (1967) Das Cosserat-Kontinuum. Z Angew Math Mech 47:485–498

    MATH  Google Scholar 

  48. Steeb H, Ebinger T, Diebels S (2005) Microscopically motivated model describing growth and remodeling of spongy bones. In: Ehlers W (ed) Proceedings of 1st GAMM symposium on continuum biomechanics, 24 - 26 November 2004, Freudenstadt- Lauterbad, Glückauf, Essen

  49. Warren W, Byskov E (2002) Three-field symmetry restrictions on two-dimenional micropolar materials. Eur J Mech A/Solids 21:779–792

    Article  MATH  MathSciNet  Google Scholar 

  50. Weinans H, Huiskes R, Grootenboer HJ (1992) Effects of material properties of femoral hip components on bone remodeling. J Orthop Res 10:845–853

    Article  Google Scholar 

  51. Wolff J, (1892) Das Gesetz der Transformation der Knochen. Hirschwald Verlag, Berlin

    Google Scholar 

  52. Zohdi T, Wriggers P (2005) Introduction to computational micromechanics. Lecture Notes in Applied and Computational Mechanics. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ebinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebinger, T., Diebels, S. & Steeb, H. Numerical Homogenization Techniques Applied to Growth and Remodelling Phenomena. Comput Mech 39, 815–830 (2007). https://doi.org/10.1007/s00466-006-0071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0071-8

Keywords

Navigation