Skip to main content
Log in

Thermal Analysis of CNT-Based Nano-Composites by Element Free Galerkin Method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the thermal analysis of carbon nanotube (CNT) based composites by meshless element free Galerkin method. Cylindrical representative volume element (cylindrical RVE) has been chosen to evaluate the thermal properties of nano-composites using multi-domain and simplified approaches. The values of temperature have been calculated at different points and plotted against RVE length and RVE radius. A sensitivity analysis of RVE as well as CNT dimensions has been carried out in detail. The present computations show that the equivalent thermal conductivity is a function of CNT length, CNT radius, RVE length and RVE radius. Based on present numerical simulations, an approximate formula is proposed to calculate the equivalent thermal conductivity of nano-composites. The results obtained by simplified approach have been found in good agreement with those obtained by multi-domain approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

k m_1 :

thermal conductivity of matrix (W/m K)

k m_2 :

thermal conductivity of carbon nanotube (W/m K)

k e :

equivalent thermal conductivity of composite (W/m K)

L :

length of cylindrical RVE (nm)

L c :

CNT length (nm)

m :

number of terms in the basis

m 1 :

matrix material

m 2 :

carbon nanotube material

n :

number of nodes in the domain of influence

n′:

outward normal to the surface

q :

heat flux (W/m2)

r o :

outer radius of CNT (nm)

R o :

radius of cylindrical RVE (nm)

t :

thickness of CNT (nm)

T C :

constant temperature at CNT surface (K)

\(T^{h}({\mathbf{r}})\) :

MLS approximation function for temperature

w :

weight function used in MLS approximation

\(\bar{w}\) :

weighting function used in weak form

α:

penalty parameter

Γ 3 :

CNT surface

Γ:

boundary of the domain

Ω 1 :

domain for matrix

Ω 2 :

domain for CNT

\(\Phi _{I} ({\mathbf{r}})\) :

shape function

References

  1. Thostensona ET, Renb Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Sci Technol 61:1899–1912

    Article  Google Scholar 

  2. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surface Sci 500:218–241

    Article  Google Scholar 

  3. Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, (2002) Mechanical and electrical properties of nanotubes. Ann Rev Mater Res 32:347–375

    Article  Google Scholar 

  4. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–532

    Article  Google Scholar 

  5. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym 25:630–645

    Google Scholar 

  6. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43:61–102

    Article  Google Scholar 

  7. Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49:31–43

    Article  Google Scholar 

  8. Rafii-Tabar H (2004) Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Phy Rep 390:235–452

    Article  Google Scholar 

  9. Shen S, Atluri SN (2004) Computational nano-mechanics and multi-scale simulation. Comput Mater Continua 1:59–90

    Google Scholar 

  10. Khare R, Bose S (2005) Carbon nanotube based composites- a review. J Miner Mater Characterization Eng 4:31–46

    Google Scholar 

  11. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  Google Scholar 

  12. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013–14019

    Article  Google Scholar 

  13. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stöckli T, Burnham NA, Forr’o L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944–947

    Article  Google Scholar 

  14. Salvetat JP, Kulik AJ, Bonard JM, Briggs GAD, Stöckli T, M’et’enier K, Bonnamy S, B’eguin F, Burnham NA, Forr’o L (1999) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv Mater 11:161–165

    Article  Google Scholar 

  15. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260

    Article  Google Scholar 

  16. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly (methyl methacrylate): carbon nanotube composites. Mater Sci Eng A 271:395–400

    Article  Google Scholar 

  17. Xie S, Li W, Pan Z, Chang B, Sun L (2000) Mechanical and physical properties on carbon nanotube. J Phys Chem Solids 61:1153–1158

    Article  Google Scholar 

  18. Allaouia A, Baia S, Chengb HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Composite Sci Technol 62:1993–1998

    Article  Google Scholar 

  19. Hayashida T, Pan L, Nakayama Y (2002) Mechanical and electrical properties of carbon tubule nanocoils. Physica B 323:352–353

    Article  Google Scholar 

  20. Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Composites Sci Technol 63:1647–1654

    Article  Google Scholar 

  21. Jiang X, Bin Y, Matsuo M (2005) Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 46:7418–7424

    Article  Google Scholar 

  22. Xiaoqing Gao, Lang Liu, Guo Q, Shi J, Zhai G (2005) Fabrication and mechanical/conductive properties of multi-walled carbon nanotube (MWNT) reinforced carbon matrix composites. Mater Lett 59:3062–3065

    Article  Google Scholar 

  23. Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Characterization 55:211–218

    Article  Google Scholar 

  24. McNallya T, Pötschkeb P, Halleyc P, Murphyc M, Martinc D, Belld SEJ, Brennane GP, Beinf D, Lemoineg P, Quinn PJ (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232

    Article  Google Scholar 

  25. Yamamoto G, Sato Y, Takahashi T, Omori M, Okubo A, Tohji K, Hashida T (2006) Mechanical properties of binder-free single-walled carbon nanotube solids. Scripta Mater 54:299–303

    Article  Google Scholar 

  26. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Phys Rev Lett 76:2511–2514

    Article  PubMed  Google Scholar 

  27. Cornwell CF, Wille LT (1997) Elastic properties of single-walled carbon nanotubes in compression. Solid State Commun 101:549–642

    Article  Google Scholar 

  28. Hernández E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and B x C y N z composite nanotubes. Phys Rev Lett 80:4502–4505

    Article  Google Scholar 

  29. Sánchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejón P (1999) Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59:12678–12688

    Article  Google Scholar 

  30. Buongiorno Nardelli M, Fattebert J-L, Orlikowski D, Roland C, Zhao Q, Bernholc J (2000) Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon 38:1703–1711

    Article  Google Scholar 

  31. Froudakis GE (2001) Hydrogen interaction with single-walled carbon nanotubes: a combined quantum-mechanics/molecular-mechanics study. Nano Lett 1:179–182

    Article  Google Scholar 

  32. Guo Y, Guo W (2003) Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field. J Phys D Appl Phys 36:805–811

    Article  Google Scholar 

  33. Williams KA, Eklund PC (2000) Monte Carlo simulations of 2 physisorption in finite-diameter carbon nanotube ropes. Chem Phys Lett 320:352–358

    Article  Google Scholar 

  34. Levesque D, Gicquel A, Darkrim FL, Kayiran SB (2002) Monte Carlo simulations of hydrogen storage in carbon nanotubes. J Phys: Condens Matter 14:9285–9293

    Article  Google Scholar 

  35. Hasan S, Guo J, Vaidyanathan M, Alam MA, Lundstrom M (2004) Monte-Carlo simulation of carbon nanotube devices. IEEE-International Workshop on Computational Electronics, October 24–27, 2004, Purdue University, West Lafayette, Indiana, USA

  36. Yao N, Lordi V (1998) Young’s modulus of single-walled carbon nanotubes. J Appl Phys 84:1939–1943

    Article  Google Scholar 

  37. Jin Y, Yuan FG (2003) Simulation of elastic properties of single-walled carbon nanotubes. Composite Sci Technol 63:1507–1515

    Article  Google Scholar 

  38. Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074

    Article  MATH  Google Scholar 

  39. Liew KM, He XQ, Wong CH (2004) On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater 52:2521–2527

    Article  Google Scholar 

  40. Liew KM, Wong CH, Tan MJ (2006) Tensile and compressive properties of carbon nanotube bundles. Acta Mater 54:225–231

    Article  Google Scholar 

  41. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  42. Sohlberg K, Sumpter BG, Tuzun RE, Noid DW (1998) Continuum methods of mechanics as a simplified approach to structural engineering of nanostructures. Nanotechnology 9:30–36

    Article  Google Scholar 

  43. Govindjee S, Sackman JL (1999) On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Commun 110:227–230

    Article  Google Scholar 

  44. Ru CQ (2000) Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys Rev B 62:16962–16967

    Article  Google Scholar 

  45. Srivastava D, Menon M, Cho K (2001) Computational nanotechnology with carbon nanotubes and fullerenes. Comput Sci Eng 3:42–55

    Article  Google Scholar 

  46. Harik VM (2002) Mechanics of carbon nanotubes: applicability of the continuum-beam models. Comput Mater Sci 24:328–342

    Article  Google Scholar 

  47. Liu YJ, Chen XL (2003) Continuum models of carbon nanotube-based composites by the BEM. Electr J Boundary Elem 1:316–335

    Google Scholar 

  48. Liu YJ, Chen XL (2003) Evaluations of the effective materials properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech Mater 35:69–81

    Article  Google Scholar 

  49. Chen XL, Liu YJ (2004) Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput Mater Sci 29:1–11

    Article  Google Scholar 

  50. Xiao T, Liao K (2004) A nonlinear pullout model for unidirectional carbon nanotube-reinforced composites. Composite Part B 35:211–217

    Article  Google Scholar 

  51. Wang XY, Wang X (2004) Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment. Composite Part B 35:79–86

    Article  Google Scholar 

  52. Liu Y, Nishimura N, Otani Y (2005) Large-scale modeling of carbon-nanotube composites by fast multipole boundary element method. Comput Mater Sci 34:173–187

    Article  Google Scholar 

  53. Kireitseu M, Kompis V, Altenbach H, Bochkareva V, Hui D, S (2005) Continuum mechanics approach and computational modelling of submicrocrystalline and nanoscale materials. Fullerenes Nanotubes Carbon Nanostruct 13:313–329

    Article  Google Scholar 

  54. Tserpesa KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Composite Part B 36:468–477

    Article  Google Scholar 

  55. Ashrafi B, Hubert P (2006) Modeling the elastic properties of carbon nanotube array/polymer composites. Composite Sci Technol 66:387–396

    Article  Google Scholar 

  56. Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single walled nanotubes. Phys Rev B 59:2514–2516

    Article  Google Scholar 

  57. Yi W, Lu L, Dian-lin Z, Pan ZW, Xie SS (1999) Linear specific heat of carbon nanotubes. Physical Review B 59:9015–9018

    Article  Google Scholar 

  58. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurement of individual multiwalled nanotubes. Phys Rev Lett 87:215502 (1–4)

    Google Scholar 

  59. Berber S, Kwon YK, Tomanek D (2000) Unsually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  PubMed  Google Scholar 

  60. Osman MA, Srivastava D (2001) Temperature dependence of the thermal conductivity of single walled carbon nanotube. Nanotechnol 12:21–24

    Article  Google Scholar 

  61. Che J, Cagin T, Goddard III WA (2001) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69

    Article  Google Scholar 

  62. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769

    Article  Google Scholar 

  63. Maruyama S (2003) A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscale Thermophys Eng 7:41–50

    MathSciNet  Google Scholar 

  64. Moreland JF, Freund JB, Chen G (2004) The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation. Microscale Thermophys Eng 8:61–69

    Article  Google Scholar 

  65. Xu Y, Ray G, Abdel-Magid B (2006) Thermal behavior of single-walled carbon nanotube polymer-matrix composites. Composite Part A (in press)

  66. Nishimura N, Liu YJ (2004) Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation method. Comput Mech 35:1–10

    Article  MATH  Google Scholar 

  67. Zhang J, Masa. Tanaka, Matsumoto T, Guzik A (2004) Heat conduction analysis in bodies containing thin walled structures by means of hybrid BNM with an application to CNT-based composites. JSME Int J 47:181–188

    Article  Google Scholar 

  68. Zhang J, Masa. Tanaka, Matsumoto T (2004) A simplified approach for heat conduction analysis of CNT-based nano composites. Comput Meth Appl Mech Eng 193:5597–5609

    Article  MATH  Google Scholar 

  69. Masa. Tanaka, Zhang J, Matsumoto T (2003) Multi-domain hybrid BNM for predicting thermal properties of CNT composites. Asia-Pacific International Conference on Computational Methods in Engineering 5–7 November, Sapporo, Japan, pp 3–12

  70. Singh IV., Sandeep K, Prakash R (2004) Application of meshless element free Galerkin method in two-dimensional heat conduction problems. Comput Assist Mech Eng Sci 11:265–274

    MATH  Google Scholar 

  71. Singh IV. (2004) Meshless EFG method in 3-D heat transfer problems: a numerical comparison, cost and error analysis. Numer Heat Transfer Part A 46:192–220

    Article  Google Scholar 

  72. Singh IV. (2005) A numerical study of weight functions, scaling and penalty parameters for heat transfer applications. Numer Heat Transfer Part A 47:1025–1053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, I.V., Tanaka, M. & Endo, M. Thermal Analysis of CNT-Based Nano-Composites by Element Free Galerkin Method. Comput Mech 39, 719–728 (2007). https://doi.org/10.1007/s00466-006-0061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0061-x

Keywords

Navigation