Skip to main content
Log in

Structural analysis of composite laminates using a mixed hybrid shell element

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The structural analysis of thin composite structures requires robust and effective shell elements. In this paper the variational formulation is based on a Hu–Washizu functional with independent displacements, stress resultants and shell strains. For the independent shell strains an additional interpolation part is introduced. This yields an improved convergence behaviour especially for laminated shells with coupled membrane and bending stiffness. The developed mixed hybrid shell element possesses the correct rank and fulfills the in–plane and bending patch test. The formulation is tested by several nonlinear examples including bifurcation and post–buckling response. The essential feature of the new element is the robustness in nonlinear computations with large rigid body motions. It allows very large load steps in comparison to standard displacement models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorninger K, Rammerstorfer FG (1990) A Layered Composite Shell Element for Elastic and Thermoelastic Stress and Stability Analysis at Large Deformations. Int Numer Meth Eng 30:833–858

    Article  MATH  Google Scholar 

  2. Koiter WT (1966) On the nonlinear theory of thin elastic shells. Proc Kon Ned Ak Wet B69:1–54

    MathSciNet  Google Scholar 

  3. Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Meth Eng 2:419–451

    Article  Google Scholar 

  4. Stanley GM, Park KC, Hughes TJR (1986) Continuum–Based Resultant Shell Elements. In: Hughes TJR, Hinton E (eds) Finite Element Methods for Plate and Shell Structures 1: Element Technology. Pineridge Press Swansea UK

  5. Zienkiewicz OC, Taylor RL, Too J (1971) Reduced integration techniques in general analysis of plates and shells. Int J Numer Meth Eng 3:275–290

    Article  MATH  MathSciNet  Google Scholar 

  6. Belytschko T, Tsay C-S (1983) A stabilization procedure for the quadrilateral plate element with one–point quadrature. Int J Numer Meth Eng 19:405–419

    Article  MATH  Google Scholar 

  7. Liu WK, Law SE, Lam D, Belytschko T (1986) Resultant–stress degenerated shell element. Comp Meth Appl Mech Eng 55:261–300

    Article  Google Scholar 

  8. Belytschko T, Leviathan I (1994) Physical stabilization of the 4–node shell element with one point quadrature. Comp Meth Appl Mech Eng 113:321–350

    Article  MATH  MathSciNet  Google Scholar 

  9. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Meth Eng 29:1595–1638

    Article  MATH  MathSciNet  Google Scholar 

  10. Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3d–elasticity at finite strains. Comp Meth Appl Mech Eng 130:57–79

    Article  MATH  MathSciNet  Google Scholar 

  11. MacNeal RH (1978) A simple quadrilateral shell element. Comput & Struct 8:175–183

    Google Scholar 

  12. Hughes TJR, Tezduyar TE (1981) Finite elements based upon Mindlin plate theory, with particular reference to the 4-node bilinear isoparametric element. J Appl Mech 48:587–595

    Article  MATH  Google Scholar 

  13. Dvorkin E, Bathe K.J (1984) A continuum mechanics based four node shell element for general nonlinear analysis. Eng Computat 1:77–88

    Google Scholar 

  14. Bathe K-J, Dvorkin E (1985) A 4-Node Plate bending element based on Mindlin/Reissner theory and a mixed interpolation. Int J Numer Meth Eng 21:367–383

    Article  MATH  Google Scholar 

  15. Gruttmann F, Wagner W, Wriggers P (1992) A Nonlinear Quadrilateral Shell Element with Drilling Degrees of Freedom. Arch Appl Mech 62:474–486

    Article  MATH  Google Scholar 

  16. Wagner W, Gruttmann, F (2005) A robust nonlinear mixed hybrid quadrilateral shell element. Int J Numer Meth Eng 64:635–666

    Article  MATH  Google Scholar 

  17. Hughes TJR (1987) The Finite Element Method, Linear static and Dynamic Finite Element Analysis, Prentice–Hall, Inc., Englewood Cliffs, New Jersey

  18. Gruttmann F, Wagner W (2004) A stabilized one–point integrated quadrilateral Reissner–Mindlin plate element. Int J Numer Meth Eng 61:2273–2295

    Article  MATH  Google Scholar 

  19. Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: The linear theory; Computational aspects. Comp Meth Appl Mech Eng 73:53–92

    Article  MATH  MathSciNet  Google Scholar 

  20. Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Meth Eng 20:1685–1695

    Article  MATH  Google Scholar 

  21. Piltner R, Taylor RL (1999) A systematic construction of B-bar functions for linear and non-linear mixed–enhanced finite elements for plane elasticity problems. Int J Numer Meth Eng. 44:615–639

    Google Scholar 

  22. Kasper EP, Taylor RL (2000) A mixed-enhanced strain method part i: Geometrically linear problems. Comput & Struct 75:237–250

    Google Scholar 

  23. Kasper EP, Taylor RL (2000) A mixed-enhanced strain method part ii: Geometrically nonlinear problems. Comput & Struct 75: 251–260

    Google Scholar 

  24. Gruttmann F, Wagner W (2005) A linear quadrilateral shell element with fast stiffness computation. Comp Meth Appl Mech Eng 194:4279–4300

    Article  MATH  Google Scholar 

  25. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: Part I. Three dimensional shells. Comp Meth Appl Mech Eng 26:331–362

    Article  MATH  Google Scholar 

  26. Simo JC (1993) On a stress resultant geometrically exact shell model. Part VII: Shell intersections with 5/6-DOF finite element formulations. Comp Meth Appl Mech Eng 108:319–339

    Article  MATH  MathSciNet  Google Scholar 

  27. Zienkiewicz OC, Taylor RL (2000) The Finite Element Method, Vol. 1–3, 5. edition, Butterworth-Heinemann, Oxford

  28. MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design 1:3–20

    Article  Google Scholar 

  29. Basar Y, Montag U, Ding Y (1993) On an isoparametric finite–element for composite laminates with finite rotations. Computat Mech 12:329–348

    Article  MATH  Google Scholar 

  30. Wagner W, Gruttmann F (1994) A simple finite rotation formulation for composite shell elements. Eng Computat 11:145–176

    Google Scholar 

  31. Gruttmann F, Sauer R, Wagner W (2000) Theory and Numerics of Three–Dimensional Beams with Elastoplastic Material Behaviour. Int J Numer Meth Eng 48:1675–1702

    Article  MATH  Google Scholar 

  32. Tsai WS (1988) Composites Design, Think Composites, Dayton

  33. Cook RD, Malkus DS, Plesha ME (1989) Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York

  34. Abramovich H, Grunwald A, Pevsner P, Weller T, David A, Ghilai G, Green A, Pekker N (2003) Experiments on Axial Compression Postbuckling Behavior of Stiffened Cylindrical Composite Panels, Proceeding of 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Material Conference, Norfolk, VI, USA, AIAA paper No. 2003–1793

  35. Abramovich H, Grunwald A, Weller T (2003) Improved Postbuckling Simulation for Design of Fibre Composite Stiffened Fuselage Structures- POSICOSS- Part 1 - Test results, TAE Report No. 990, January 2003

  36. Wagner W, Wriggers P (1988) A Simple Method for the Calculation of Postcritical Branches. Eng Computa 5:103–109

    Google Scholar 

  37. Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng Struct dyn 5:283–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruttmann, F., Wagner, W. Structural analysis of composite laminates using a mixed hybrid shell element. Comput Mech 37, 479–497 (2006). https://doi.org/10.1007/s00466-005-0730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-005-0730-1

Keywords

Navigation