Skip to main content
Log in

Numerical boundary identification for Helmholtz-type equations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We study the identification of an unknown portion of the boundary of a two-dimensional domain occupied by a material satisfying Helmholtz-type equations from additional Cauchy data on the remaining known portion of the boundary. This inverse geometric problem is approached using the boundary element method (BEM) in conjunction with the Tikhonov first-order regularization procedure, whilst the choice of the regularization parameter is based on the L-curve criterion. The numerical results obtained show that the proposed method produces a convergent and stable solution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubo S. (1988). Inverse problems related to the mechanics and fracture of solids and structures. JSME Int J 31:157–166

    Google Scholar 

  2. Hadamard J. (1923). Lectures on Cauchy problem in linear partial differential equations. Oxford University Press, London

    MATH  Google Scholar 

  3. Wei X., Chandra A., Leu L-J., Mukherjee S. (1994). Shape optimization in elasticity and elasto-viscoplasticity by the boundary element method. Int J Solids Struct 31:533–550

    Article  MATH  Google Scholar 

  4. Shi X., Mukherjee S. (1999). Shape optimization in the three-dimensional linear elasticity by the boundary contour method. Engng Anal Boundary Elements 23:627–637

    Article  MATH  Google Scholar 

  5. Bobaru F., Mukherjee S. (2001). Shape sensitivity analysis and shape optimization in planar elasticity using the element-free Galerkin method. Comput Meth Appl Mech Engng 190:4319–4337

    Article  MATH  Google Scholar 

  6. Calvo E., Garcia L. (2001). Shape design sensitivity analysis in elasticity using the boundary element method. Engng Anal Boundary Elements 25:887–896

    Article  MATH  Google Scholar 

  7. Tafreshi A. (2002). Shape design sensitivity analysis in 2D anisotropic structures using the boundary element method. Engng Anal Boundary Elements 26:237–251

    Article  MATH  Google Scholar 

  8. Ikehata M. (1998). Size estimation of inclusion. J Inverse Ill-Posed Probl 6:127–140

    Article  MathSciNet  Google Scholar 

  9. Tanaka M., Yamagiwa K. (1989). A boundary element for some inverse problems in elastodynamics. Appl Math Modelling 13:307–312

    Article  MATH  Google Scholar 

  10. Bezerra LM., Saigal S. (1993). A boundary element formulation for the inverse elastostatics problem (IESP) of flaw detection. Int J Numer Meth Engng 36:2189–2202

    Article  MATH  Google Scholar 

  11. Kassab AJ., Moslehy FA., Daryapurkar AB. (1994). Nondestructive detection of cavities by an inverse elastostatics boundary element method. Engng Anal Boundary Elements 13:45–55

    Article  Google Scholar 

  12. Mellings SC., Aliabadi MH. (1995). Flaw identification using the boundary element method. Int J Numer Meth Engng 38:399–419

    Article  MATH  Google Scholar 

  13. Ulrich TW., Moslehy FA., Kassab AJ. (1996). A BEM based pattern search solution for a class of inverse elastostatic problems. Int J Solids Struct 33:2123–2131

    Article  MATH  Google Scholar 

  14. Marin L., Elliott L., Ingham DB., Lesnic D. (2003). Identification of material properties and cavities in two-dimensional linear elasticity. Comput Mech 31:293–300

    Article  Google Scholar 

  15. Aparicio ND., Pidcock MK. (1996). The boundary inverse problem for the Laplace equation in two dimensions. Inverse Problems 12:565–577

    Article  MathSciNet  MATH  Google Scholar 

  16. Beretta E., Vessela S. (1998). Stable determination of boundaries from Cauchy data. SIAM J Math Anal 30:220–232

    Article  MathSciNet  Google Scholar 

  17. Bukhgeim AL., Cheng J., Yamamoto M. (1999). Stability for an inverse problem of determining a part of the boundary. Inverse Problems 15:1021–1032

    Article  MathSciNet  MATH  Google Scholar 

  18. Hsieh CK., Kassab AJ. (1986). A general method for the solution of inverse heat conduction problems with partially unknown system geometries. Int J Heat Mass Transfer 29:47–58

    Article  MATH  Google Scholar 

  19. Huang CC., Chao BH. (1997). An inverse geometry problem for identifying irregular boundary configurations. Int J Heat Mass Transfer 40:2045–2053

    Article  MATH  Google Scholar 

  20. Huang CC., Tsai CC. (1998). A transient inverse two-dimensional geometry problem in estimating time-dependent irregular boundary configurations. Int J Heat Mass Transfer 41:1707–1718

    Article  MATH  Google Scholar 

  21. Hon YC., Zongmin W. (2000). A numerical computation for inverse boundary determination problem. Engng Anal Boundary Elements 24:599–606

    Article  MATH  Google Scholar 

  22. Park HM., Ku JH. (2001). Shape identification for natural convection problems. Commun Numer Meth Engng 17:871–880

    Article  MATH  Google Scholar 

  23. Lesnic D., Berger JR., Martin PA. (2002). A boundary element regularization method for the boundary determination in potential corrosion damage. Inverse Probl Engng 10:163–182

    Article  Google Scholar 

  24. Marin L., Lesnic D. (2003). BEM first-order regularisation method in linear elasticity for boundary identification. Comput Meth Appl Mech Engng 192:2059–2071

    Article  MathSciNet  MATH  Google Scholar 

  25. Beskos DE. (1997). Boundary element method in dynamic analysis: Part II (1986–1996). ASME Appl Mech Rev 50:149–197

    Article  Google Scholar 

  26. Chen JT., Wong FC. (1998). Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition. J Sound Vibration 217:75–95

    Article  Google Scholar 

  27. Harari I., Barbone PE., Slavutin M., Shalom R. (1998). Boundary infinite elements for the Helmholtz equation in exterior domains. Int J Numer Meth Engng 41:1105–1131

    Article  MATH  Google Scholar 

  28. Hall WS., Mao XQ. (1995). A boundary element investigation of irregular frequencies in electromagnetic scattering. Engng Anal Boundary Elements 16:245–252

    Article  Google Scholar 

  29. Kraus AD., Aziz A., Welty J. (2001). Extended surface heat transfer. John Wiley & Sons, New York

    Google Scholar 

  30. Hansen PC. (1992). Analysis of discrete and ill-posed problems by means of the L-curve. SIAM Rev 34:561–580

    Article  MathSciNet  MATH  Google Scholar 

  31. Morozov VA. (1966). On the solution of functional equations by the method of regularization. Soviet Math Dokl 7:414–417

    MathSciNet  MATH  Google Scholar 

  32. Wahba G. (1977). Practical approximate solution to linear operator equations when the data is noisy. SIAM J Numer Anal 14:651–667

    Article  MathSciNet  MATH  Google Scholar 

  33. Kellogg OD. (1923). Foundations of potential theory. New Haven, Dover

    MATH  Google Scholar 

  34. Chen G., Zhou J. (1992). Boundary element methods. Academic Press, London

    MATH  Google Scholar 

  35. Marin L., Elliott L., Heggs PJ., Ingham DB., Lesnic D., Wen X. (2003). An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation. Comput Meth Appl Mech Engng 192:709–722

    Article  MathSciNet  MATH  Google Scholar 

  36. Marin L., Elliott L., Heggs PJ., Ingham DB., Lesnic D., Wen X. (2003). Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations. Comput Mech 31:367–377

    Article  MathSciNet  Google Scholar 

  37. Gill PE., Murray W., Wright MH. (1981). Practical optimization. Academic Press, London

    MATH  Google Scholar 

  38. Peneau S., Jarny Y., Sarda A. (1994). Isotherm shape identification for a two-dimensional heat conduction problem. In:Bui HD., Tanaka M., Bonnet M., Maigre H., Luzzato E., Reynier M (eds). Inverse Problems in Engineering Mechanics. Rotterdam, Balkema, pp. 47–53

    Google Scholar 

  39. Birginie J-M., Allard F., Kassab AJ. (1996). Application of trigonometric boundary elements to heat and mass transfer problems. In: Brebbia CA., Martin JB., Aliabadi MH., Haie N (eds). BEM 18. Braga, Portugal, pp. 65–74

    Google Scholar 

  40. Tikhonov AN., Leonov AS., Yagola AG. (1998). Nonlinear Ill-Posed Problems. Chapman & Hall, London

    Book  Google Scholar 

  41. Hansen PC. (2001). The L-curve and its use in the numerical treatment of inverse problems. In: Johnston P (eds). Computational Inverse Problems in Electrocardiology. WIT Press, Southampton, pp.119–142

    Google Scholar 

  42. Hanke M. (1996). Limitations of the L-curve method in ill-posed problems. BIT 36:287–301

    Article  MathSciNet  MATH  Google Scholar 

  43. Vogel CR. (1996). Non-convergence of the L-curve regularization parameter method. Inverse Probl 12:535–547

    Article  MathSciNet  MATH  Google Scholar 

  44. Hansen PC. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14:1487–1503

    Article  MathSciNet  MATH  Google Scholar 

  45. Abramowitz M., Stegun JA. (1965). Handbook of mathematical functions. Dover Publications, New York

    MATH  Google Scholar 

  46. NAG Fortran Library Manual, Mark 20. The Numerical Algorithms Group Limited, 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Marin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin, L. Numerical boundary identification for Helmholtz-type equations. Comput Mech 39, 25–40 (2006). https://doi.org/10.1007/s00466-005-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-005-0006-9

Keywords

Navigation